» Articles » PMID: 24170808

MitoBreak: the Mitochondrial DNA Breakpoints Database

Overview
Specialty Biochemistry
Date 2013 Oct 31
PMID 24170808
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondrial DNA (mtDNA) rearrangements are key events in the development of many diseases. Investigations of mtDNA regions affected by rearrangements (i.e. breakpoints) can lead to important discoveries about rearrangement mechanisms and can offer important clues about the causes of mitochondrial diseases. Here, we present the mitochondrial DNA breakpoints database (MitoBreak; http://mitobreak.portugene.com), a free, web-accessible comprehensive list of breakpoints from three classes of somatic mtDNA rearrangements: circular deleted (deletions), circular partially duplicated (duplications) and linear mtDNAs. Currently, MitoBreak contains >1400 mtDNA rearrangements from seven species (Homo sapiens, Mus musculus, Rattus norvegicus, Macaca mulatta, Drosophila melanogaster, Caenorhabditis elegans and Podospora anserina) and their associated phenotypic information collected from nearly 400 publications. The database allows researchers to perform multiple types of data analyses through user-friendly interfaces with full or partial datasets. It also permits the download of curated data and the submission of new mtDNA rearrangements. For each reported case, MitoBreak also documents the precise breakpoint positions, junction sequences, disease or associated symptoms and links to the related publications, providing a useful resource to study the causes and consequences of mtDNA structural alterations.

Citing Articles

High frequency of mitochondrial DNA rearrangements in the peripheral blood of adults with intellectual disability.

Bulduk B, Tortajada J, Torres-Egurrola L, Valiente-Palleja A, Martinez-Leal R, Vilella E J Intellect Disabil Res. 2024; 69(2):137-152.

PMID: 39506491 PMC: 11735882. DOI: 10.1111/jir.13197.


The genomic mosaic of mitochondrial dysfunction: Decoding nuclear and mitochondrial epigenetic contributions to maternally inherited diabetes and deafness pathogenesis.

Donato L, Scimone C, Alibrandi S, Vadala M, Castellucci M, Bonfiglio V Heliyon. 2024; 10(14):e34756.

PMID: 39148984 PMC: 11324998. DOI: 10.1016/j.heliyon.2024.e34756.


Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation.

Bernardino Gomes T, Vincent A, Menger K, Stewart J, Nicholls T Biochem J. 2024; 481(11):683-715.

PMID: 38804971 PMC: 11346376. DOI: 10.1042/BCJ20230262.


Common mitochondrial deletions in RNA-Seq: evaluation of bulk, single-cell, and spatial transcriptomic datasets.

Omidsalar A, McCullough C, Xu L, Boedijono S, Gerke D, Webb M Commun Biol. 2024; 7(1):200.

PMID: 38368460 PMC: 10874445. DOI: 10.1038/s42003-024-05877-4.


Secondary structure of the human mitochondrial genome affects formation of deletions.

Shamanskiy V, Mikhailova A, Tretiakov E, Ushakova K, Mikhailova A, Oreshkov S BMC Biol. 2023; 21(1):103.

PMID: 37158879 PMC: 10166460. DOI: 10.1186/s12915-023-01606-1.


References
1.
Clayton D . Replication of animal mitochondrial DNA. Cell. 1982; 28(4):693-705. DOI: 10.1016/0092-8674(82)90049-6. View

2.
Hixson J, Wong T, Clayton D . Both the conserved stem-loop and divergent 5'-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication. J Biol Chem. 1986; 261(5):2384-90. View

3.
Lupski J . Genomic rearrangements and sporadic disease. Nat Genet. 2007; 39(7 Suppl):S43-7. DOI: 10.1038/ng2084. View

4.
Damas J, Carneiro J, Goncalves J, Stewart J, Samuels D, Amorim A . Mitochondrial DNA deletions are associated with non-B DNA conformations. Nucleic Acids Res. 2012; 40(16):7606-21. PMC: 3439893. DOI: 10.1093/nar/gks500. View

5.
Damas J, Samuels D, Carneiro J, Amorim A, Pereira F . Mitochondrial DNA rearrangements in health and disease--a comprehensive study. Hum Mutat. 2013; 35(1):1-14. DOI: 10.1002/humu.22452. View