» Articles » PMID: 24161808

MNE Software for Processing MEG and EEG Data

Overview
Journal Neuroimage
Specialty Radiology
Date 2013 Oct 29
PMID 24161808
Citations 626
Authors
Affiliations
Soon will be listed here.
Abstract

Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals originating from neural currents in the brain. Using these signals to characterize and locate brain activity is a challenging task, as evidenced by several decades of methodological contributions. MNE, whose name stems from its capability to compute cortically-constrained minimum-norm current estimates from M/EEG data, is a software package that provides comprehensive analysis tools and workflows including preprocessing, source estimation, time-frequency analysis, statistical analysis, and several methods to estimate functional connectivity between distributed brain regions. The present paper gives detailed information about the MNE package and describes typical use cases while also warning about potential caveats in analysis. The MNE package is a collaborative effort of multiple institutes striving to implement and share best methods and to facilitate distribution of analysis pipelines to advance reproducibility of research. Full documentation is available at http://martinos.org/mne.

Citing Articles

A continuous approach to explain insomnia and subjective-objective sleep discrepancy.

Herzog R, Crosbie F, Aloulou A, Hanif U, Chennaoui M, Leger D Commun Biol. 2025; 8(1):423.

PMID: 40075150 PMC: 11903875. DOI: 10.1038/s42003-025-07794-6.


Evaluating robotic actions: spatiotemporal brain dynamics of performance assessment in robot-assisted laparoscopic training.

Lingelbach K, Rips J, Karstensen L, Mathis-Ullrich F, Vukelic M Front Neuroergon. 2025; 6:1535799.

PMID: 40051983 PMC: 11880255. DOI: 10.3389/fnrgo.2025.1535799.


Shared neural dynamics of facial expression processing.

Ely M, Ambrus G Cogn Neurodyn. 2025; 19(1):45.

PMID: 40046006 PMC: 11880506. DOI: 10.1007/s11571-025-10230-4.


TSF-MDD: A Deep Learning Approach for Electroencephalography-Based Diagnosis of Major Depressive Disorder with Temporal-Spatial-Frequency Feature Fusion.

Gan W, Zhao R, Ma Y, Ning X Bioengineering (Basel). 2025; 12(2).

PMID: 40001616 PMC: 11851794. DOI: 10.3390/bioengineering12020095.


Cortical parcellation optimized for magnetoencephalography with a clustering technique.

Sommariva S, Subramaniyam N, Parkkonen L Sci Rep. 2025; 15(1):6404.

PMID: 39984607 PMC: 11845507. DOI: 10.1038/s41598-025-90166-1.


References
1.
Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J . EEG and MEG data analysis in SPM8. Comput Intell Neurosci. 2011; 2011:852961. PMC: 3061292. DOI: 10.1155/2011/852961. View

2.
Fuchs M, Wagner M, Kohler T, Wischmann H . Linear and nonlinear current density reconstructions. J Clin Neurophysiol. 1999; 16(3):267-95. DOI: 10.1097/00004691-199905000-00006. View

3.
Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulo T . A common formalism for the integral formulations of the forward EEG problem. IEEE Trans Med Imaging. 2005; 24(1):12-28. DOI: 10.1109/tmi.2004.837363. View

4.
Hyvarinen A, Oja E . Independent component analysis: algorithms and applications. Neural Netw. 2000; 13(4-5):411-30. DOI: 10.1016/s0893-6080(00)00026-5. View

5.
Dale A, Sereno M . Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach. J Cogn Neurosci. 2013; 5(2):162-76. DOI: 10.1162/jocn.1993.5.2.162. View