» Articles » PMID: 24141552

Gloeocapsopsis AAB1, an Extremely Desiccation-tolerant Cyanobacterium Isolated from the Atacama Desert

Overview
Journal Extremophiles
Publisher Springer
Date 2013 Oct 22
PMID 24141552
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The comprehensive study of microorganisms that evolved in the Atacama Desert, the driest and oldest on earth, may help to understand the key role of water for life. In this context, we previously characterized the microenvironment that allows colonization of the underside of quartzes in the Coastal Range of this desert by hypolithic microorganisms (Azua-Bustos et al. Microb Ecol 58:568-581, 2011). Now, we describe the biodiversity composition of these biofilms and the isolation from it of a new cyanobacterial strain. Based on morphologic and phylogenetic analyses, this isolate (AAB1) was classified as a new member of the Gloeocapsopsis genus. Physiological, morphological and molecular responses by isolate AAB1 show that this strain is extremely tolerant to desiccation. Our results also indicate that the isolate biosynthesizes sucrose and trehalose in response to this stressful condition. We identified two candidate genes involved in sucrose synthesis, namely sucrose 6-phosphate synthase and sucrose 6-phosphate phosphatase. Thus, the Gloeocapsopsis isolate AAB1 may represent a suitable model for understanding tolerance to low water availability.

Citing Articles

Microbial biogeography along a 2578 km transect on the East Antarctic Plateau.

Parro V, Lezcano M, Moreno-Paz M, Davila A, Azua-Bustos A, Garcia-Villadangos M Nat Commun. 2025; 16(1):775.

PMID: 39824814 PMC: 11742046. DOI: 10.1038/s41467-025-55997-6.


Unveiling metabolic pathways involved in the extreme desiccation tolerance of an Atacama cyanobacterium.

Moore R, Azua-Bustos A, Gonzalez-Silva C, Carr C Sci Rep. 2023; 13(1):15767.

PMID: 37737281 PMC: 10516996. DOI: 10.1038/s41598-023-41879-8.


Metabolites Facilitating Adaptation of Desert Cyanobacteria to Extremely Arid Environments.

Dabravolski S, Isayenkov S Plants (Basel). 2022; 11(23).

PMID: 36501264 PMC: 9736550. DOI: 10.3390/plants11233225.


Opening the Gap: Rare Lichens With Rare Cyanobionts - Unexpected Cyanobiont Diversity in Cyanobacterial Lichens of the Order Lichinales.

Jung P, Brust K, Schultz M, Budel B, Donner A, Lakatos M Front Microbiol. 2021; 12:728378.

PMID: 34690969 PMC: 8527099. DOI: 10.3389/fmicb.2021.728378.


Red/far-red light signals regulate the activity of the carbon-concentrating mechanism in cyanobacteria.

Oren N, Timm S, Frank M, Mantovani O, Murik O, Hagemann M Sci Adv. 2021; 7(34).

PMID: 34407941 PMC: 8373116. DOI: 10.1126/sciadv.abg0435.


References
1.
Drees K, Neilson J, Betancourt J, Quade J, Henderson D, Pryor B . Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol. 2006; 72(12):7902-8. PMC: 1694221. DOI: 10.1128/AEM.01305-06. View

2.
Gorbushina A . Life on the rocks. Environ Microbiol. 2007; 9(7):1613-31. DOI: 10.1111/j.1462-2920.2007.01301.x. View

3.
Ashraf M . Inducing drought tolerance in plants: recent advances. Biotechnol Adv. 2009; 28(1):169-83. DOI: 10.1016/j.biotechadv.2009.11.005. View

4.
Hirai M, Yamakawa R, Nishio J, Yamaji T, Kashino Y, Koike H . Deactivation of photosynthetic activities is triggered by loss of a small amount of water in a desiccation-tolerant cyanobacterium, Nostoc commune. Plant Cell Physiol. 2004; 45(7):872-8. DOI: 10.1093/pcp/pch094. View

5.
Klahn S, Hagemann M . Compatible solute biosynthesis in cyanobacteria. Environ Microbiol. 2010; 13(3):551-62. DOI: 10.1111/j.1462-2920.2010.02366.x. View