» Articles » PMID: 24136454

Posterior Cortical Atrophy: Review of the Recent Literature

Overview
Specialty Neurology
Date 2013 Oct 19
PMID 24136454
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Posterior cortical atrophy (PCA) is a group of neurodegenerative dementing disorders characterized by initial predominant visual complaints followed by progressive decline in cognitive functions. The visuospatial and visuoperceptual defects arise from the dysfunction of, respectively, the dorsal (occipito-parietal) and the ventral (occipito-temporal) streams. Clinical symptoms, results of neuropsychological examination, and findings of posterior cerebral atrophy and/or posterior hypoperfusion/hypometabolism contribute to the diagnosis. However, owing to the insidious onset of PCA and the non-specificity of initial symptoms, the diagnosis is often delayed. Specific etiologies include Alzheimer's disease, dementia with Lewy bodies, subcortical gliosis, corticobasal degeneration, and prion-associated diseases. Alzheimer's disease accounts for at least 80 % of PCA cases. Recent research has concentrated on better defining the clinical presentation of PCA, improving neuroimaging analysis, testing new neuroimaging techniques, and developing biological measurements. Selected recent papers on PCA are reviewed in this article.

Citing Articles

Towards realistic simulation of disease progression in the visual cortex with CNNs.

Moore J, Kang C, Vigneshwaran V, Stanley E, Memon A, Wilms M Sci Rep. 2025; 15(1):6099.

PMID: 39972104 PMC: 11839997. DOI: 10.1038/s41598-025-89738-y.


Mobile Phone Use by People with Mild to Moderate Dementia: Uncovering Challenges and Identifying Opportunities: Mobile Phone Use by People with Mild to Moderate Dementia.

Dixon E, Michaels R, Xiao X, Zhong Y, Clary P, Narayanan A ASSETS. 2023; 2022.

PMID: 37283282 PMC: 10202486. DOI: 10.1145/3517428.3544809.


Dementia in Convolutional Neural Networks: Using Deep Learning Models to Simulate Neurodegeneration of the Visual System.

Moore J, Tuladhar A, Ismail Z, Mouches P, Wilms M, Forkert N Neuroinformatics. 2022; 21(1):45-55.

PMID: 36083416 DOI: 10.1007/s12021-022-09602-6.


Understanding How Sensory Changes Experienced by Individuals with a Range of Age-Related Cognitive Changes Can Effect Technology Use.

Dixon E, Anderson J, Lazar A ACM Trans Access Comput. 2022; 15.

PMID: 35919105 PMC: 9340800. DOI: 10.1145/3511906.


Brain metabolic signatures across the Alzheimer's disease spectrum.

Sala A, Caprioglio C, Santangelo R, Vanoli E, Iannaccone S, Magnani G Eur J Nucl Med Mol Imaging. 2019; 47(2):256-269.

PMID: 31811345 DOI: 10.1007/s00259-019-04559-2.


References
1.
Andrade K, Kas A, Samri D, Sarazin M, Dubois B, Habert M . Visuospatial deficits and hemispheric perfusion asymmetries in posterior cortical atrophy. Cortex. 2012; 49(4):940-7. DOI: 10.1016/j.cortex.2012.03.010. View

2.
Sugimoto A, Midorikawa A, Koyama S, Futamura A, Hieda S, Kawamura M . Picture agnosia as a characteristic of posterior cortical atrophy. Eur Neurol. 2012; 68(1):34-41. DOI: 10.1159/000335589. View

3.
Migliaccio R, Agosta F, Possin K, Rabinovici G, Miller B, Gorno-Tempini M . White matter atrophy in Alzheimer's disease variants. Alzheimers Dement. 2012; 8(5 Suppl):S78-87.e1-2. PMC: 3717610. DOI: 10.1016/j.jalz.2012.04.010. View

4.
Formaglio M, Krolak-Salmon P, Tilikete C, Bernard M, Croisile B, Vighetto A . [Homonymous hemianopia and posterior cortical atrophy]. Rev Neurol (Paris). 2009; 165(3):256-62. DOI: 10.1016/j.neurol.2008.10.010. View

5.
Snowden J, Stopford C, Julien C, Thompson J, Davidson Y, Gibbons L . Cognitive phenotypes in Alzheimer's disease and genetic risk. Cortex. 2007; 43(7):835-45. DOI: 10.1016/s0010-9452(08)70683-x. View