Xu Y, Yu S, Li Z, Kou B, Pang J, Zhao W
Proc Natl Acad Sci U S A. 2024; 121(28):e2403143121.
PMID: 38959041
PMC: 11252921.
DOI: 10.1073/pnas.2403143121.
Di Matteo F, Mancuso F, Turcio R, Ciaglia T, Stagno C, Di Chio C
Molecules. 2024; 29(12).
PMID: 38931004
PMC: 11206332.
DOI: 10.3390/molecules29122940.
Tao X, Zhao C, MacKinnon R
Proc Natl Acad Sci U S A. 2023; 120(18):e2302325120.
PMID: 37098056
PMC: 10160969.
DOI: 10.1073/pnas.2302325120.
Zhang Q, Liu Y, Xu J, Teng Y, Zhang Z
Adv Exp Med Biol. 2022; 1349:387-400.
PMID: 35138624
DOI: 10.1007/978-981-16-4254-8_18.
Liu R, Sun L, Wang Y, Jia M, Wang Q, Cai X
Curr Neuropharmacol. 2021; 20(5):916-928.
PMID: 34911427
PMC: 9881102.
DOI: 10.2174/1570159X19666211215104829.
Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing.
Lu R, Metzner K, Zhou F, Flauaus C, Balzulat A, Engel P
Int J Mol Sci. 2021; 22(1).
PMID: 33401689
PMC: 7795269.
DOI: 10.3390/ijms22010405.
Structural Titration of Slo2.2, a Na-Dependent K Channel.
Hite R, MacKinnon R
Cell. 2017; 168(3):390-399.e11.
PMID: 28111072
PMC: 5382815.
DOI: 10.1016/j.cell.2016.12.030.
Cortical Axons, Isolated in Channels, Display Activity-Dependent Signal Modulation as a Result of Targeted Stimulation.
Lewandowska M, Radivojevic M, Jackel D, Muller J, Hierlemann A
Front Neurosci. 2016; 10:83.
PMID: 27013945
PMC: 4779934.
DOI: 10.3389/fnins.2016.00083.
Hydrophobic interactions between the S5 segment and the pore helix stabilizes the closed state of Slo2.1 potassium channels.
Suzuki T, Hansen A, Sanguinetti M
Biochim Biophys Acta. 2016; 1858(4):783-92.
PMID: 26724206
PMC: 4779660.
DOI: 10.1016/j.bbamem.2015.12.024.
Knockout of Slo2.2 enhances itch, abolishes KNa current, and increases action potential firing frequency in DRG neurons.
Martinez-Espinosa P, Wu J, Yang C, Gonzalez-Perez V, Zhou H, Liang H
Elife. 2015; 4.
PMID: 26559620
PMC: 4641468.
DOI: 10.7554/eLife.10013.
Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel.
Hite R, Yuan P, Li Z, Hsuing Y, Walz T, MacKinnon R
Nature. 2015; 527(7577):198-203.
PMID: 26436452
PMC: 4886347.
DOI: 10.1038/nature14958.
Functional coupling between sodium-activated potassium channels and voltage-dependent persistent sodium currents in cricket Kenyon cells.
Takahashi I, Yoshino M
J Neurophysiol. 2015; 114(4):2450-9.
PMID: 26269549
PMC: 4620132.
DOI: 10.1152/jn.00087.2015.
Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels.
Thomson S, Hansen A, Sanguinetti M
J Biol Chem. 2015; 290(23):14528-35.
PMID: 25903137
PMC: 4505520.
DOI: 10.1074/jbc.M115.653089.
Intracellular ATP does not inhibit Slo2.1 K+ channels.
Garg P, Sanguinetti M
Physiol Rep. 2014; 2(9).
PMID: 25214519
PMC: 4270230.
DOI: 10.14814/phy2.12118.
Emerging role of the KCNT1 Slack channel in intellectual disability.
Kim G, Kaczmarek L
Front Cell Neurosci. 2014; 8:209.
PMID: 25120433
PMC: 4112808.
DOI: 10.3389/fncel.2014.00209.
Slack, Slick and Sodium-Activated Potassium Channels.
Kaczmarek L
ISRN Neurosci. 2013; 2013(2013).
PMID: 24319675
PMC: 3850776.
DOI: 10.1155/2013/354262.
Structural basis of ion permeation gating in Slo2.1 K+ channels.
Garg P, Gardner A, Garg V, Sanguinetti M
J Gen Physiol. 2013; 142(5):523-42.
PMID: 24166878
PMC: 3813382.
DOI: 10.1085/jgp.201311064.
Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels.
Zhang Y, Brown M, Hyland C, Chen Y, Kronengold J, Fleming M
J Neurosci. 2012; 32(44):15318-27.
PMID: 23115170
PMC: 3518385.
DOI: 10.1523/JNEUROSCI.2162-12.2012.
Activation of Slo2.1 channels by niflumic acid.
Dai L, Garg V, Sanguinetti M
J Gen Physiol. 2010; 135(3):275-95.
PMID: 20176855
PMC: 2828905.
DOI: 10.1085/jgp.200910316.
The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels.
Chen H, Kronengold J, Yan Y, Gazula V, Brown M, Ma L
J Neurosci. 2009; 29(17):5654-65.
PMID: 19403831
PMC: 3688047.
DOI: 10.1523/JNEUROSCI.5978-08.2009.