» Articles » PMID: 24122336

Oxidative Stress Management in the Filamentous, Heterocystous, Diazotrophic Cyanobacterium, Anabaena PCC7120

Overview
Journal Photosynth Res
Publisher Springer
Date 2013 Oct 15
PMID 24122336
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Reactive oxygen species (ROS) are inevitably generated as by-products of respiratory/photosynthetic electron transport in oxygenic photoautotrophs. Unless effectively scavenged, these ROS can damage all cellular components. The filamentous, heterocystous, nitrogen-fixing strains of the cyanobacterium, Anabaena, serve as naturally abundant contributors of nitrogen biofertilizers in tropical rice paddy fields. Anabaena strains are known to tolerate several abiotic stresses, such as heat, UV, gamma radiation, desiccation, etc., that are known to generate ROS. ROS are detoxified by specific antioxidant enzymes like superoxide dismutases (SOD), catalases and peroxiredoxins. The genome of Anabaena PCC7120 encodes two SODs, two catalases and seven peroxiredoxins, indicating the presence of an elaborate antioxidant enzymatic machinery to defend its cellular components from ROS. This article summarizes recent findings and depicts important perspectives in oxidative stress management in Anabaena PCC7120.

Citing Articles

Metalloproteins in the Biology of Heterocysts.

Pernil R, Schleiff E Life (Basel). 2019; 9(2).

PMID: 30987221 PMC: 6616624. DOI: 10.3390/life9020032.


A Specific Single Nucleotide Polymorphism in the ATP Synthase Gene Significantly Improves Environmental Stress Tolerance of Synechococcus elongatus PCC 7942.

Lou W, Tan X, Song K, Zhang S, Luan G, Li C Appl Environ Microbiol. 2018; 84(18).

PMID: 30006407 PMC: 6121992. DOI: 10.1128/AEM.01222-18.


Honoring eight senior distinguished plant biologists from India.

Subramanyam R, Allakhverdiev S, Govindjee Photosynth Res. 2018; 139(1-3):45-52.

PMID: 29948748 DOI: 10.1007/s11120-018-0531-y.


Impairment of ntcA gene revealed its role in regulating iron homeostasis, ROS production and cellular phenotype under iron deficiency in cyanobacterium Anabaena sp. PCC 7120.

Singh Kaushik M, Srivastava M, Singh A, Mishra A World J Microbiol Biotechnol. 2017; 33(8):158.

PMID: 28730560 DOI: 10.1007/s11274-017-2323-5.


Cyanobacterial Mn-catalase 'KatB': Molecular link between salinity and oxidative stress resistance.

Chakravarty D, Banerjee M, Waghmare N, Ballal A Commun Integr Biol. 2016; 9(5):e1216738.

PMID: 27829979 PMC: 5100657. DOI: 10.1080/19420889.2016.1216738.


References
1.
Jakopitsch C, Ruker F, Regelsberger G, Dockal M, Peschek G, Obinger C . Catalase-peroxidase from the cyanobacterium Synechocystis PCC 6803: cloning, overexpression in Escherichia coli, and kinetic characterization. Biol Chem. 1999; 380(9):1087-96. DOI: 10.1515/BC.1999.135. View

2.
Sato N, Moriyama T, Toyoshima M, Mizusawa M, Tajima N . The all0458/lti46.2 gene encodes a low temperature-induced Dps protein homologue in the cyanobacteria Anabaena sp. PCC 7120 and Anabaena variabilis M3. Microbiology (Reading). 2012; 158(Pt 10):2527-2536. DOI: 10.1099/mic.0.060657-0. View

3.
Mittler R, Tel-Or E . Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC 7942. Free Radic Res Commun. 1991; 12-13 Pt 2:845-50. View

4.
Herbert S, Samson G, Fork D, Laudenbach D . Characterization of damage to photosystems I and II in a cyanobacterium lacking detectable iron superoxide dismutase activity. Proc Natl Acad Sci U S A. 1992; 89(18):8716-20. PMC: 49991. DOI: 10.1073/pnas.89.18.8716. View

5.
Bernroitner M, Zamocky M, Furtmuller P, Peschek G, Obinger C . Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. J Exp Bot. 2009; 60(2):423-40. DOI: 10.1093/jxb/ern309. View