» Articles » PMID: 24120845

Lipid-anchored SNAREs Lacking Transmembrane Regions Fully Support Membrane Fusion During Neurotransmitter Release

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2013 Oct 15
PMID 24120845
Citations 70
Authors
Affiliations
Soon will be listed here.
Abstract

Synaptic vesicle fusion during neurotransmitter release is mediated by assembly of SNARE- and SM-protein complexes composed of syntaxin-1, SNAP-25, synaptobrevin-2/VAMP2, and Munc18-1. Current models suggest that SNARE-complex assembly catalyzes membrane fusion by pulling the transmembrane regions (TMRs) of SNARE proteins together, thus allowing their TMRs to form a fusion pore. These models are consistent with the requirement for TMRs in viral fusion proteins. However, the role of the SNARE TMRs in synaptic vesicle fusion has not yet been tested physiologically. Here, we examined whether synaptic SNAREs require TMRs for catalysis of synaptic vesicle fusion, which was monitored electrophysiologically at millisecond time resolution. Surprisingly, we find that both lipid-anchored syntaxin-1 and lipid-anchored synaptobrevin-2 lacking TMRs efficiently promoted spontaneous and Ca(2+)-triggered membrane fusion. Our data suggest that SNARE proteins function during fusion primarily as force generators, consistent with the notion that forcing lipid membranes close together suffices to induce membrane fusion.

Citing Articles

A lever hypothesis for Synaptotagmin-1 action in neurotransmitter release.

Jaczynska K, Esser V, Xu J, Sari L, Lin M, Rosenmund C Proc Natl Acad Sci U S A. 2025; 122(1):e2417941121.

PMID: 39793049 PMC: 11725900. DOI: 10.1073/pnas.2417941121.


Neurotransmitter release is triggered by a calcium-induced rearrangement in the Synaptotagmin-1/SNARE complex primary interface.

Toulme E, Lazaro A, Trimbuch T, Rizo J, Rosenmund C Proc Natl Acad Sci U S A. 2024; 121(42):e2409636121.

PMID: 39374398 PMC: 11494337. DOI: 10.1073/pnas.2409636121.


Neurotransmitter release is triggered by a calcium-induced rearrangement in the Synaptotagmin-1/SNARE complex primary interface.

Toulme E, Lazaro A, Trimbuch T, Rizo J, Rosenmund C bioRxiv. 2024; .

PMID: 38948868 PMC: 11213007. DOI: 10.1101/2024.06.17.599435.


A lever hypothesis for Synaptotagmin-1 action in neurotransmitter release.

Jaczynska K, Esser V, Xu J, Sari L, Lin M, Rosenmund C bioRxiv. 2024; .

PMID: 38948826 PMC: 11212951. DOI: 10.1101/2024.06.17.599417.


Fine tuning of the net charge alternation of polyzwitterion surfaced lipid nanoparticles to enhance cellular uptake and membrane fusion potential.

Homma K, Miura Y, Kobayashi M, Chintrakulchai W, Toyoda M, Ogi K Sci Technol Adv Mater. 2024; 25(1):2338785.

PMID: 38646148 PMC: 11028023. DOI: 10.1080/14686996.2024.2338785.


References
1.
Anwar K, Klemm R, Condon A, Severin K, Zhang M, Ghirlando R . The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae. J Cell Biol. 2012; 197(2):209-17. PMC: 3328390. DOI: 10.1083/jcb.201111115. View

2.
Melikyan G, White J, Cohen F . GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol. 1995; 131(3):679-91. PMC: 2120621. DOI: 10.1083/jcb.131.3.679. View

3.
Borisovska M, Schwarz Y, Dhara M, Yarzagaray A, Hugo S, Narzi D . Membrane-proximal tryptophans of synaptobrevin II stabilize priming of secretory vesicles. J Neurosci. 2012; 32(45):15983-97. PMC: 6621631. DOI: 10.1523/JNEUROSCI.6282-11.2012. View

4.
Hofmann M, Peplowska K, Rohde J, Poschner B, Ungermann C, Langosch D . Self-interaction of a SNARE transmembrane domain promotes the hemifusion-to-fusion transition. J Mol Biol. 2006; 364(5):1048-60. DOI: 10.1016/j.jmb.2006.09.077. View

5.
Fisher R, Pevsner J, Burgoyne R . Control of fusion pore dynamics during exocytosis by Munc18. Science. 2001; 291(5505):875-8. DOI: 10.1126/science.291.5505.875. View