» Articles » PMID: 24088070

Raman Hyperspectral Imaging of Microfossils: Potential Pitfalls

Overview
Journal Astrobiology
Specialty Biology
Date 2013 Oct 4
PMID 24088070
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Initially, Raman spectroscopy was a specialized technique used by vibrational spectroscopists; however, due to rapid advancements in instrumentation and imaging techniques over the last few decades, Raman spectrometers are widely available at many institutions, allowing Raman spectroscopy to become a widespread analytical tool in mineralogy and other geological sciences. Hyperspectral imaging, in particular, has become popular due to the fact that Raman spectroscopy can quickly delineate crystallographic and compositional differences in 2-D and 3-D at the micron scale. Although this rapid growth of applications to the Earth sciences has provided great insight across the geological sciences, the ease of application as the instruments become increasingly automated combined with nonspecialists using this techique has resulted in the propagation of errors and misunderstandings throughout the field. For example, the literature now includes misassigned vibration modes, inappropriate spectral processing techniques, confocal depth of laser penetration incorrectly estimated into opaque crystalline solids, and a misconstrued understanding of the anisotropic nature of sp² carbons.

Citing Articles

Water and moganite participation in agates from Bou Hamza (Morocco).

Powolny T, Dumanska-Slowik M, Szczerbowska-Boruchowska M, Woszczyna M Sci Rep. 2024; 14(1):22473.

PMID: 39341899 PMC: 11439072. DOI: 10.1038/s41598-024-73136-x.


A Spectral Comparison of Jarosites Using Techniques Relevant to the Robotic Exploration of Biosignatures on Mars.

Loiselle L, McCraig M, Darby Dyar M, Leveille R, Shieh S, Southam G Life (Basel). 2018; 8(4).

PMID: 30563260 PMC: 6316503. DOI: 10.3390/life8040061.


Fungal Ferromanganese Mineralisation in Cretaceous Dinosaur Bones from the Gobi Desert, Mongolia.

Owocki K, Kremer B, Wrzosek B, Krolikowska A, Kazmierczak J PLoS One. 2016; 11(2):e0146293.

PMID: 26863014 PMC: 4749326. DOI: 10.1371/journal.pone.0146293.


Raman Imaging Spectroscopy of a Putative Microfossil from the ∼3.46 Ga Apex Chert: Insights from Quartz Grain Orientation.

Bower D, Steele A, Fries M, Green O, Lindsay J Astrobiology. 2016; 16(2):169-80.

PMID: 26848838 PMC: 4770934. DOI: 10.1089/ast.2014.1207.

References
1.
Edwards H, Hutchinson I, Ingley R, Parnell J, Vitek P, Jehlicka J . Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology. 2013; 13(6):543-9. PMC: 3689185. DOI: 10.1089/ast.2012.0872. View

2.
Cavalazzi B, Westall F, Cady S, Barbieri R, Foucher F . Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, eastern North Atlantic Ocean. Astrobiology. 2011; 11(7):619-32. DOI: 10.1089/ast.2011.0657. View

3.
Jehlicka J, Urban O, Pokorny J . Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochim Acta A Mol Biomol Spectrosc. 2003; 59(10):2341-52. DOI: 10.1016/s1386-1425(03)00077-5. View

4.
Des Marais D, Nuth 3rd J, Allamandola L, Boss A, Farmer J, Hoehler T . The NASA Astrobiology Roadmap. Astrobiology. 2008; 8(4):715-30. DOI: 10.1089/ast.2008.0819. View

5.
Schopf J, Kudryavtsev A, Agresti D, Wdowiak T, Czaja A . Laser--Raman imagery of Earth's earliest fossils. Nature. 2002; 416(6876):73-6. DOI: 10.1038/416073a. View