» Articles » PMID: 24084940

Antipsychotics and the Gut Microbiome: Olanzapine-induced Metabolic Dysfunction is Attenuated by Antibiotic Administration in the Rat

Overview
Date 2013 Oct 3
PMID 24084940
Citations 97
Authors
Affiliations
Soon will be listed here.
Abstract

The atypical antipsychotic olanzapine is often associated with serious metabolic side effects including weight gain and increased visceral fat. These adverse events are a considerable clinical problem and the mechanisms underlying them are multifactorial and poorly understood. Growing evidence suggests that the gut microbiota has a key role in energy regulation and disease states such as obesity. Moreover, we recently showed that chronic olanzapine altered the composition of the gut microbiome in the rat. It is thus possible that treatments that alter gut microbiota composition could ameliorate olanzapine-induced weight gain and associated metabolic syndrome. To this end, we investigated the impact of antibiotic-induced alteration of the gut microbiota on the metabolic effects associated with chronic olanzapine treatment in female rats. Animals received vehicle or olanzapine (2 mg kg(-1) per day) for 21 days, intraperitoneal injection, two times daily. Animals were also coadministered vehicle or an antibiotic cocktail consisting of neomycin (250 mg kg(-1) per day), metronidazole (50 mg kg(-1) per day) and polymyxin B (9 mg kg(-1) per day) by oral gavage, daily, beginning 5 days before olanzapine treatment. The antibiotic cocktail drastically altered the microbiota of olanzapine-treated rats, and olanzapine alone was also associated with an altered microbiota. Coadministration of the antibiotic cocktail in olanzapine-treated rats attenuated: body weight gain, uterine fat deposition, macrophage infiltration of adipose tissue, plasma free fatty acid levels, all of which were increased by olanzapine alone. These results suggest that the gut microbiome has a role in the cycle of metabolic dysfunction associated with olanzapine, and could represent a novel therapeutic target for preventing antipsychotic-induced metabolic disease.

Citing Articles

Precision Psychobiotics for Gut-Brain Axis Health: Advancing the Discovery Pipelines to Deliver Mechanistic Pathways and Proven Health Efficacy.

Slykerman R, Davies N, Vlckova K, ORiordan K, Bassett S, Dekker J Microb Biotechnol. 2025; 18(1):e70079.

PMID: 39815671 PMC: 11735468. DOI: 10.1111/1751-7915.70079.


Exploring the effects of probiotics on olanzapine-induced metabolic syndrome through the gut microbiota.

Mushraf S, Chawla K, Fayaz S, Mathew A, Reddy G, Kappettu Gadahad M Gut Pathog. 2024; 16(1):77.

PMID: 39709451 PMC: 11662719. DOI: 10.1186/s13099-024-00664-2.


The Microbiota-Gut-Brain Axis and Neurological Disorders: A Comprehensive Review.

Nakhal M, Yassin L, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A Life (Basel). 2024; 14(10).

PMID: 39459534 PMC: 11508655. DOI: 10.3390/life14101234.


A Possible Role of Akkermansia muciniphila in the Treatment of Olanzapine-Induced Weight Gain.

Bertossi F Cureus. 2024; 16(3):e55733.

PMID: 38463411 PMC: 10921070. DOI: 10.7759/cureus.55733.


Gut microbiota composition in depressive disorder: a systematic review, meta-analysis, and meta-regression.

Gao M, Wang J, Liu P, Tu H, Zhang R, Zhang Y Transl Psychiatry. 2023; 13(1):379.

PMID: 38065935 PMC: 10709466. DOI: 10.1038/s41398-023-02670-5.


References
1.
Reynolds G . Pharmacogenetic Aspects of Antipsychotic Drug-induced Weight Gain - A Critical Review. Clin Psychopharmacol Neurosci. 2013; 10(2):71-7. PMC: 3569150. DOI: 10.9758/cpn.2012.10.2.71. View

2.
Fraher M, OToole P, Quigley E . Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol. 2012; 9(6):312-22. DOI: 10.1038/nrgastro.2012.44. View

3.
Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E . Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005; 46(11):2347-55. DOI: 10.1194/jlr.M500294-JLR200. View

4.
Foley D, Morley K . Systematic review of early cardiometabolic outcomes of the first treated episode of psychosis. Arch Gen Psychiatry. 2011; 68(6):609-16. DOI: 10.1001/archgenpsychiatry.2011.2. View

5.
Claesson C, Nilsson L, Kronvall G, Walder M, Sorberg M . Antimicrobial activity of tigecycline and comparative agents against clinical isolates of staphylococci and enterococci from ICUs and general hospital wards at three Swedish university hospitals. Scand J Infect Dis. 2009; 41(3):171-81. DOI: 10.1080/00365540902721368. View