» Articles » PMID: 24083137

A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina

Overview
Date 2013 Oct 2
PMID 24083137
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Optical coherence tomography (OCT) is a recently established imaging technique to describe different information about the internal structures of an object and to image various aspects of biological tissues. OCT image segmentation is mostly introduced on retinal OCT to localize the intra-retinal boundaries. Here, we review some of the important image segmentation methods for processing retinal OCT images. We may classify the OCT segmentation approaches into five distinct groups according to the image domain subjected to the segmentation algorithm. Current researches in OCT segmentation are mostly based on improving the accuracy and precision, and on reducing the required processing time. There is no doubt that current 3-D imaging modalities are now moving the research projects toward volume segmentation along with 3-D rendering and visualization. It is also important to develop robust methods capable of dealing with pathologic cases in OCT imaging.

Citing Articles

CLAHE-CapsNet: Efficient retina optical coherence tomography classification using capsule networks with contrast limited adaptive histogram equalization.

Opoku M, Weyori B, Adekoya A, Adu K PLoS One. 2023; 18(11):e0288663.

PMID: 38032915 PMC: 10688733. DOI: 10.1371/journal.pone.0288663.


Automatic 3D reconstruction of an anatomically correct upper airway from endoscopic long range OCT images.

Zhuang Z, Chen D, Liang Z, Zhang S, Liu Z, Chen W Biomed Opt Express. 2023; 14(9):4594-4608.

PMID: 37791278 PMC: 10545183. DOI: 10.1364/BOE.496812.


PseudoSegRT: efficient pseudo-labelling for intraoperative OCT segmentation.

Huang Y, Asaria R, Stoyanov D, Sarunic M, Bano S Int J Comput Assist Radiol Surg. 2023; 18(7):1245-1252.

PMID: 37233893 PMC: 10329588. DOI: 10.1007/s11548-023-02928-9.


Reliability of Retinal Layer Annotation with a Novel, High-Resolution Optical Coherence Tomography Device: A Comparative Study.

von der Emde L, Sassmannshausen M, Morelle O, Rennen G, Holz F, Wintergerst M Bioengineering (Basel). 2023; 10(4).

PMID: 37106625 PMC: 10136209. DOI: 10.3390/bioengineering10040438.


Automated assessment of the smoothness of retinal layers in optical coherence tomography images using a machine learning algorithm.

Saeidian J, Mahmoudi T, Riazi-Esfahani H, Montazeriani Z, Khodabande A, Zarei M BMC Med Imaging. 2023; 23(1):21.

PMID: 36732684 PMC: 9896782. DOI: 10.1186/s12880-023-00976-w.


References
1.
Hood D, Fortune B, Arthur S, Xing D, Salant J, Ritch R . Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography. J Glaucoma. 2008; 17(7):519-28. PMC: 2987575. DOI: 10.1097/IJG.0b013e3181629a02. View

2.
Bagci A, Shahidi M, Ansari R, Blair M, Blair N, Zelkha R . Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol. 2008; 146(5):679-87. PMC: 2590782. DOI: 10.1016/j.ajo.2008.06.010. View

3.
Srinivasan V, Monson B, Wojtkowski M, Bilonick R, Gorczynska I, Chen R . Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2008; 49(4):1571-9. PMC: 2846094. DOI: 10.1167/iovs.07-0838. View

4.
Rohrschneider K, Burk R, Kruse F, Volcker H . Reproducibility of the optic nerve head topography with a new laser tomographic scanning device. Ophthalmology. 1994; 101(6):1044-9. DOI: 10.1016/s0161-6420(94)31220-6. View

5.
Wollstein G, Paunescu L, Ko T, Fujimoto J, Kowalevicz A, Hartl I . Ultrahigh-resolution optical coherence tomography in glaucoma. Ophthalmology. 2005; 112(2):229-37. PMC: 1936975. DOI: 10.1016/j.ophtha.2004.08.021. View