» Articles » PMID: 2403492

Role of Transforming Growth Factor-beta in Bone Remodeling

Overview
Publisher Wolters Kluwer
Specialty Orthopedics
Date 1990 Jan 1
PMID 2403492
Citations 103
Authors
Affiliations
Soon will be listed here.
Abstract

Transforming growth factor-beta (TGF-beta) plays a critical role in bone remodeling. TGF-beta stimulates matrix protein synthesis, has dramatic effects on the bone cells responsible for bone formation and resorption, and is abundant in bone and bone-conditioned media. Multiple sources of TGF-beta have been described. It was initially purified from platelets. Two distinct forms of TGF-beta have been purified from bone. The second form, TGF-beta II, was initially purified from bone but was then identified in platelets and also as the major TGF-beta in the monkey kidney BSC-1 cell line. The two bone-derived factors were called cartilage-inducing Factor A (CIF-A) and cartilage-inducing Factor B (CIF-B), based on their capacity to induce the formation of extracellular matrix proteins, which are characteristic of cartilage. CIF-A is identical to the TGF-beta purified from platelets, which is called TGF-beta I. CIG-B is the same as TGF-beta II, which was sequenced soon after CIF-B was discovered and characterized. There is 70% sequence homology between the two forms. The largest source of TGF-beta in the body is present in bone (200 micrograms/kg tissue), although the most concentrated source is in platelets. TGF-beta has multiple effects on bone cells depending on their phenotype and/or stage of differentiation. Osteoblasts, the cells responsible for formation of new bone and perhaps cellular control of bone remodeling, are directly affected by TGF-beta, which can induce differentiation or proliferation, depending on the osteoblastic cell type examined. TGF-beta inhibits the formation of osteoclast precursors and bone resorption and, in greater concentrations, has inhibitory effects on isolated osteoclasts, the cells responsible for bone resorption. TGF-beta may act as a bone-coupling factor linking bone resorption to bone formation.

Citing Articles

Landscape analysis of m6A modification reveals the dysfunction of bone metabolism in osteoporosis mice.

Zheng L, Lan C, Gao X, Zhu A, Chen Y, Lin J Heliyon. 2025; 11(3):e42123.

PMID: 39991256 PMC: 11847259. DOI: 10.1016/j.heliyon.2025.e42123.


Aging: A struggle for beneficial to overcome negative factors made by muscle and bone.

Welc S, Brotto M, White K, Bonewald L Mech Ageing Dev. 2025; 224:112039.

PMID: 39952614 PMC: 11893237. DOI: 10.1016/j.mad.2025.112039.


NEDD4 family E3 ligases in osteoporosis: mechanisms and emerging potential therapeutic targets.

Wu H, Zuo J, Dai Y, Li H, Wang S J Orthop Surg Res. 2025; 20(1):92.

PMID: 39849530 PMC: 11761774. DOI: 10.1186/s13018-025-05517-5.


Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes.

Shanbhag S, Al-Sharabi N, Fritz-Wallace K, Kristoffersen E, Bunaes D, Romandini M J Funct Biomater. 2024; 15(10).

PMID: 39452600 PMC: 11508515. DOI: 10.3390/jfb15100302.


The Potential of Enamel Matrix Derivative in Countering Bisphosphonate-Induced Effects in Osteoblasts.

Kim M, Choi M, Kwon Y, Ohe J, Jung J Life (Basel). 2024; 14(9).

PMID: 39337872 PMC: 11432935. DOI: 10.3390/life14091088.