» Articles » PMID: 23994317

Combined PET/MR Imaging in Neurology: MR-based Attenuation Correction Implies a Strong Spatial Bias when Ignoring Bone

Overview
Journal Neuroimage
Specialty Radiology
Date 2013 Sep 3
PMID 23994317
Citations 89
Authors
Affiliations
Soon will be listed here.
Abstract

Aim: Combined PET/MR systems have now become available for clinical use. Given the lack of integrated standard transmission (TX) sources in these systems, attenuation and scatter correction (AC) must be performed using the available MR-images. Since bone tissue cannot easily be accounted for during MR-AC, PET quantification can be biased, in particular, in the vicinity of the skull. Here, we assess PET quantification in PET/MR imaging of patients using phantoms and patient data.

Materials And Methods: Nineteen patients referred to our clinic for a PET/CT exam as part of the diagnostic evaluation of suspected dementia were included in our study. The patients were injected with 200MBq [(18)F]FDG and imaged with PET/CT and PET/MR in random sequence within 1h. Both, PET/CT and PET/MR were performed as single-bed acquisitions without contrast administration. PET/CT and PET/MR data were reconstructed following CT-based and MR-based AC, respectively. MR-AC was performed based on: (A) standard Dixon-Water-Fat segmentation (DWFS), (B) DWFS with co-registered and segmented CT bone values superimposed, and (C) with co-registered full CT-based attenuation image. All PET images were reconstructed using AW-OSEM, with neither resolution recovery nor time-of-flight option employed. PET/CT (D) or PET/MR (A-C) images were decay-corrected to the start time of the first examination. PET images following AC were evaluated visually and quantitatively using 10 homeomorphic regions of interest drawn on a transaxial T1w-MR image traversing the central basal ganglia. We report the relative difference (%) of the mean ROI values for (A)-(C) in reference to PET/CT (D). In a separate phantom experiment a 2L plastic bottle was layered with approximately 12mm of Gypsum plaster to mimic skull bone. The phantom was imaged on PET/CT only and standard MR-AC was performed by replacing hyperdense CT attenuation values corresponding to bone (plaster) with attenuation values of water. PET image reconstruction was performed with CT-AC (D) and CT-AC using the modified CT images corresponding to MR-AC using DWFS (A).

Results: PET activity values in patients following MR-AC (A) showed a substantial radial dependency when compared to PET/CT. In all patients cortical PET activity was lower than the activity in the central region of the brain (10-15%). When adding bone attenuation values to standard MR-AC (B and C) the radial gradient of PET activity values was removed. Further evaluation of PET/MR activity following MR-AC (A) relative to MR-AC (C) using the full CT for attenuation correction showed an underestimation of 25% in the cortical regions and 5-10% in the central regions of the brain. Observations in patients were replicated by observations from the phantom study.

Conclusion: Our phantom and patient data demonstrate a spatially varying bias of the PET activity in PET/MR images of the brain when bone tissue is not accounted for during attenuation correction. This has immediate implications for PET/MR imaging of the brain. Therefore, refinements to existing MR-AC methods or alternative strategies need to be found prior to adopting PET/MR imaging of the brain in clinical routine and research.

Citing Articles

Added prognostic value of DCE blood volume imaging in patients with suspected recurrent or residual glioblastoma-A hybrid [F]FET PET/MRI study.

Henriksen O, Muhic A, Lundemann M, Larsson H, Lindberg U, Andersen T Neurooncol Adv. 2024; 6(1):vdae196.

PMID: 39664680 PMC: 11632823. DOI: 10.1093/noajnl/vdae196.


Magnetic resonance imaging and o-(2-[F]fluoroethyl)-l-tyrosine positron emission tomography for early response assessment of nivolumab and bevacizumab in patients with recurrent high-grade astrocytic glioma.

Henriksen O, Maarup S, Hasselbalch B, Poulsen H, Christensen I, Madsen K Neurooncol Adv. 2024; 6(1):vdae178.

PMID: 39659835 PMC: 11630048. DOI: 10.1093/noajnl/vdae178.


Joint EANM/EANO/RANO/SNMMI practice guideline/procedure standards for diagnostics and therapy (theranostics) of meningiomas using radiolabeled somatostatin receptor ligands: version 1.0.

Albert N, Preusser M, Traub-Weidinger T, Tolboom N, Law I, Palmer J Eur J Nucl Med Mol Imaging. 2024; 51(12):3662-3679.

PMID: 38898354 PMC: 11445317. DOI: 10.1007/s00259-024-06783-x.


A review of PET attenuation correction methods for PET-MR.

Krokos G, MacKewn J, Dunn J, Marsden P EJNMMI Phys. 2023; 10(1):52.

PMID: 37695384 PMC: 10495310. DOI: 10.1186/s40658-023-00569-0.


International EANM-SNMMI-ISMRM consensus recommendation for PET/MRI in oncology.

Veit-Haibach P, Ahlstrom H, Boellaard R, Delgado Bolton R, Hesse S, Hope T Eur J Nucl Med Mol Imaging. 2023; 50(12):3513-3537.

PMID: 37624384 PMC: 10547645. DOI: 10.1007/s00259-023-06406-x.