» Articles » PMID: 23980836

Contributions of the σ(W) , σ(M) and σ(X) Regulons to the Lantibiotic Resistome of Bacillus Subtilis

Overview
Journal Mol Microbiol
Date 2013 Aug 29
PMID 23980836
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σ(M) , σ(W) and σ(X) all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge-region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σ(M) to nisin resistance is expression of ltaSa, encoding a stress-activated lipoteichoic acid synthase, and σ(X) functions primarily by activation of the dlt operon controlling d-alanylation of teichoic acids. Together, σ(M) and σ(X) regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σ(W) is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σ(W) contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homologue) and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis.

Citing Articles

The extracytoplasmic sigma factor σ supports biofilm formation and increases biocontrol efficacy in Bacillus velezensis 118.

Cai Y, Tao H, Gaballa A, Pi H, Helmann J Sci Rep. 2025; 15(1):5315.

PMID: 39939707 PMC: 11822112. DOI: 10.1038/s41598-025-89284-7.


The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history.

Ravi J, Anantharaman V, Chen S, Brenner E, Datta P, Aravind L mSystems. 2024; 9(6):e0084723.

PMID: 38809013 PMC: 11237479. DOI: 10.1128/msystems.00847-23.


Staphylococcus aureus SigS Induces Expression of a Regulatory Protein Pair That Modulates Its mRNA Stability.

Al Ali A, Alsulami J, Aubee J, Idowu A, Tomlinson B, Felton E J Bacteriol. 2023; 205(6):e0039222.

PMID: 37255480 PMC: 10294688. DOI: 10.1128/jb.00392-22.


Insights into the Roles of Lipoteichoic Acids and MprF in Bacillus subtilis.

Guyet A, Alofi A, Daniel R mBio. 2023; 14(1):e0266722.

PMID: 36744964 PMC: 9973362. DOI: 10.1128/mbio.02667-22.


Development of a whole-cell biosensor for detection of antibiotics targeting bacterial cell envelope in Bacillus subtilis.

Yin J, Cheng D, Zhu Y, Liang Y, Yu Z Appl Microbiol Biotechnol. 2022; 106(2):789-798.

PMID: 35015142 DOI: 10.1007/s00253-022-11762-z.


References
1.
Wenzel M, Kohl B, Munch D, Raatschen N, Albada H, Hamoen L . Proteomic response of Bacillus subtilis to lantibiotics reflects differences in interaction with the cytoplasmic membrane. Antimicrob Agents Chemother. 2012; 56(11):5749-57. PMC: 3486579. DOI: 10.1128/AAC.01380-12. View

2.
Vrancken K, Van Mellaert L, Anne J . Characterization of the Streptomyces lividans PspA response. J Bacteriol. 2008; 190(10):3475-81. PMC: 2394988. DOI: 10.1128/JB.01966-07. View

3.
Gravesen A, Kallipolitis B, Holmstrom K, Hoiby P, Ramnath M, Knochel S . pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl Environ Microbiol. 2004; 70(3):1669-79. PMC: 368357. DOI: 10.1128/AEM.70.3.1669-1679.2004. View

4.
Shi Y, Yang X, Garg N, van der Donk W . Production of lantipeptides in Escherichia coli. J Am Chem Soc. 2010; 133(8):2338-41. PMC: 3044485. DOI: 10.1021/ja109044r. View

5.
Peschel A, Otto M, JACK R, Kalbacher H, Jung G, Gotz F . Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem. 1999; 274(13):8405-10. DOI: 10.1074/jbc.274.13.8405. View