» Articles » PMID: 23978327

Influenza Virus Hemagglutinin Stalk-based Antibodies and Vaccines

Overview
Journal Curr Opin Virol
Publisher Elsevier
Specialty Microbiology
Date 2013 Aug 28
PMID 23978327
Citations 208
Authors
Affiliations
Soon will be listed here.
Abstract

Antibodies against the conserved stalk domain of the hemagglutinin are currently being discussed as promising therapeutic tools against influenza virus infections. Because of the conservation of the stalk domain these antibodies are able to broadly neutralize a wide spectrum of influenza virus strains and subtypes. Broadly protective vaccine candidates based on the epitopes of these antibodies, for example, chimeric and headless hemagglutinin structures, are currently under development and show promising results in animals models. These candidates could be developed into universal influenza virus vaccines that protect from infection with drifted seasonal as well as novel pandemic influenza virus strains therefore obviating the need for annual vaccination, and enhancing our pandemic preparedness.

Citing Articles

Structural characterization of influenza group 1 chimeric hemagglutinins as broad vaccine immunogens.

Nguyen Y, Zhu X, Han J, Rodriguez A, Sun W, Yu W Proc Natl Acad Sci U S A. 2025; 122(7):e2416628122.

PMID: 39937865 PMC: 11848309. DOI: 10.1073/pnas.2416628122.


Discovery of three novel neutralizing antibody epitopes on the human astrovirus capsid spike and mechanistic insights into virus neutralization.

Lanning S, Aguilar-Hernandez N, Serrao V, Lopez T, ORourke S, Lentz A J Virol. 2025; 99(2):e0161924.

PMID: 39846739 PMC: 11852706. DOI: 10.1128/jvi.01619-24.


Development of broadly protective influenza B vaccines.

Gu C, Babujee L, Pattinson D, Chiba S, Jester P, Maemura T NPJ Vaccines. 2025; 10(1):2.

PMID: 39774170 PMC: 11707085. DOI: 10.1038/s41541-024-01058-w.


Use of equine H3N8 hemagglutinin as a broadly protective influenza vaccine immunogen.

Verhoeven D, Sponseller B, Crowe Jr J, Bangaru S, Webby R, Lee B NPJ Vaccines. 2024; 9(1):247.

PMID: 39702334 PMC: 11659547. DOI: 10.1038/s41541-024-01037-1.


Developing a Coccidioides posadasii and SARS-CoV-2 Co-infection Model in the K18-hACE2 Transgenic Mouse.

Kollath D, Grill F, Itogawa A, Fabio-Braga A, Morales M, Shepardson K Commun Med (Lond). 2024; 4(1):186.

PMID: 39349727 PMC: 11442577. DOI: 10.1038/s43856-024-00610-y.


References
1.
Miller M, Gardner T, Krammer F, Aguado L, Tortorella D, Basler C . Neutralizing antibodies against previously encountered influenza virus strains increase over time: a longitudinal analysis. Sci Transl Med. 2013; 5(198):198ra107. PMC: 4091683. DOI: 10.1126/scitranslmed.3006637. View

2.
Tan G, Krammer F, Eggink D, Kongchanagul A, Moran T, Palese P . A pan-H1 anti-hemagglutinin monoclonal antibody with potent broad-spectrum efficacy in vivo. J Virol. 2012; 86(11):6179-88. PMC: 3372189. DOI: 10.1128/JVI.00469-12. View

3.
Throsby M, van den Brink E, Jongeneelen M, Poon L, Alard P, Cornelissen L . Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One. 2008; 3(12):e3942. PMC: 2596486. DOI: 10.1371/journal.pone.0003942. View

4.
Gerdil C . The annual production cycle for influenza vaccine. Vaccine. 2003; 21(16):1776-9. DOI: 10.1016/s0264-410x(03)00071-9. View

5.
Sui J, Hwang W, Perez S, Wei G, Aird D, Chen L . Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol. 2009; 16(3):265-73. PMC: 2692245. DOI: 10.1038/nsmb.1566. View