» Articles » PMID: 23970891

Microbeam Methodologies As Powerful Tools in Manganese Hyperaccumulation Research: Present Status and Future Directions

Overview
Journal Front Plant Sci
Date 2013 Aug 24
PMID 23970891
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Microbeam studies over the past decade have garnered unique insight into manganese (Mn) homeostasis in plant species that hyperaccumulate this essential mineral micronutrient. Electron- and/or proton-probe methodologies employed to examine tissue elemental distributions have proven highly effective in illuminating excess foliar Mn disposal strategies, some apparently unique to Mn hyperaccumulating plants. When applied to samples prepared with minimal artefacts, these are powerful tools for extracting true 'snapshot' data of living systems. For a range of reasons, Mn hyperaccumulation is particularly suited to in vivo interrogation by this approach. Whilst microbeam investigation of metallophytes is well documented, certain methods originally intended for non-biological samples are now widely applied in biology. This review examines current knowledge about Mn hyperaccumulators with reference to microbeam methodologies, and discusses implications for future research into metal transporters.

Citing Articles

Effective Separation and Recovery of Manganese and Potassium from Biomass Ash by Solvent Extraction.

Oleszek S, Shiota K, Chen M, Takaoka M ACS Omega. 2022; 7(23):20155-20164.

PMID: 35721962 PMC: 9201890. DOI: 10.1021/acsomega.2c02002.


Manganese distribution in the Mn-hyperaccumulator Grevillea meisneri from New Caledonia.

Bihanic C, Petit E, Perrot R, Cases L, Garcia A, Pelissier F Sci Rep. 2021; 11(1):23780.

PMID: 34893664 PMC: 8664926. DOI: 10.1038/s41598-021-03151-9.


Advances in the Mechanisms of Plant Tolerance to Manganese Toxicity.

Li J, Jia Y, Dong R, Huang R, Liu P, Li X Int J Mol Sci. 2019; 20(20).

PMID: 31615142 PMC: 6834138. DOI: 10.3390/ijms20205096.


Foliar Nutrient Distribution Patterns in Sympatric Maple Species Reflect Contrasting Sensitivity to Excess Manganese.

Fernando D, Marshall A, Lynch J PLoS One. 2016; 11(7):e0157702.

PMID: 27391424 PMC: 4938512. DOI: 10.1371/journal.pone.0157702.


Light acclimation of shade-tolerant and light-resistant Tradescantia species: induction of chlorophyll a fluorescence and P photooxidation, expression of PsbS and Lhcb1 proteins.

Mishanin V, Trubitsin B, Benkov M, Minin A, Tikhonov A Photosynth Res. 2016; 130(1-3):275-291.

PMID: 27037825 DOI: 10.1007/s11120-016-0252-z.


References
1.
Pollard A . Metal hyperaccumulation: a model system for coevolutionary studies. New Phytol. 2021; 146(2):179-181. DOI: 10.1046/j.1469-8137.2000.00651.x. View

2.
Fernando D, Batianoff G, Baker A, Woodrow I . In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX. Plant Cell Environ. 2006; 29(5):1012-20. DOI: 10.1111/j.1365-3040.2006.01498.x. View

3.
K pper H , Jie Zhao F , McGrath . Cellular compartmentation of zinc in leaves of the hyperaccumulator thlaspi caerulescens . Plant Physiol. 1999; 119(1):305-12. PMC: 32233. DOI: 10.1104/pp.119.1.305. View

4.
Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S . Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J. 2003; 37(2):269-81. DOI: 10.1046/j.1365-313x.2003.01960.x. View

5.
Fernando D, Bakkaus E, Perrier N, Baker A, Woodrow I, Batianoff G . Manganese accumulation in the leaf mesophyll of four tree species: a PIXE/EDAX localization study. New Phytol. 2006; 171(4):751-7. DOI: 10.1111/j.1469-8137.2006.01783.x. View