» Articles » PMID: 23966031

Evolution and Distribution of Saxitoxin Biosynthesis in Dinoflagellates

Overview
Journal Mar Drugs
Publisher MDPI
Specialties Biology
Pharmacology
Date 2013 Aug 23
PMID 23966031
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Numerous species of marine dinoflagellates synthesize the potent environmental neurotoxic alkaloid, saxitoxin, the agent of the human illness, paralytic shellfish poisoning. In addition, certain freshwater species of cyanobacteria also synthesize the same toxic compound, with the biosynthetic pathway and genes responsible being recently reported. Three theories have been postulated to explain the origin of saxitoxin in dinoflagellates: The production of saxitoxin by co-cultured bacteria rather than the dinoflagellates themselves, convergent evolution within both dinoflagellates and bacteria and horizontal gene transfer between dinoflagellates and bacteria. The discovery of cyanobacterial saxitoxin homologs in dinoflagellates has enabled us for the first time to evaluate these theories. Here, we review the distribution of saxitoxin within the dinoflagellates and our knowledge of its genetic basis to determine the likely evolutionary origins of this potent neurotoxin.

Citing Articles

Nanopore Sequencing of Amoebophrya Species Reveals Novel Collection of Bacteria Putatively Associated With Karlodinium veneficum.

Tizabi D, Hill R, Bachvaroff T Genome Biol Evol. 2025; 17(3).

PMID: 39943733 PMC: 11890096. DOI: 10.1093/gbe/evaf022.


Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential.

Mishra S, Mishra Y, Kumar A Naunyn Schmiedebergs Arch Pharmacol. 2025; .

PMID: 39797987 DOI: 10.1007/s00210-024-03667-7.


Toxicological and Pharmacological Activities, and Potential Medical Applications, of Marine Algal Toxins.

Gao X, Wang H, Chen K, Guo Y, Zhou J, Xie W Int J Mol Sci. 2024; 25(17).

PMID: 39273145 PMC: 11394994. DOI: 10.3390/ijms25179194.


Dinoflagellate-Bacteria Interactions: Physiology, Ecology, and Evolution.

Yang X, Liu Z, Zhang Y, Shi X, Wu Z Biology (Basel). 2024; 13(8).

PMID: 39194517 PMC: 11351557. DOI: 10.3390/biology13080579.


Genomic copy number variability at the genus, species and population levels impacts in situ ecological analyses of dinoflagellates and harmful algal blooms.

Ruvindy R, Barua A, Bolch C, Sarowar C, Savela H, Murray S ISME Commun. 2023; 3(1):70.

PMID: 37422553 PMC: 10329664. DOI: 10.1038/s43705-023-00274-0.


References
1.
Hackett J, Wisecaver J, Brosnahan M, Kulis D, Anderson D, Bhattacharya D . Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Mol Biol Evol. 2012; 30(1):70-8. PMC: 3525144. DOI: 10.1093/molbev/mss142. View

2.
Gough J . Convergent evolution of domain architectures (is rare). Bioinformatics. 2004; 21(8):1464-71. DOI: 10.1093/bioinformatics/bti204. View

3.
Orr R, Stuken A, Murray S, Jakobsen K . Evolutionary acquisition and loss of saxitoxin biosynthesis in dinoflagellates: the second "core" gene, sxtG. Appl Environ Microbiol. 2013; 79(7):2128-36. PMC: 3623241. DOI: 10.1128/AEM.03279-12. View

4.
Keeling P, Palmer J . Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008; 9(8):605-18. DOI: 10.1038/nrg2386. View

5.
Callahan B, Thattai M, Shraiman B . Emergent gene order in a model of modular polyketide synthases. Proc Natl Acad Sci U S A. 2009; 106(46):19410-5. PMC: 2780807. DOI: 10.1073/pnas.0902364106. View