» Articles » PMID: 23954502

Structural Rearrangement in an RsmA/CsrA Ortholog of Pseudomonas Aeruginosa Creates a Dimeric RNA-binding Protein, RsmN

Overview
Journal Structure
Publisher Cell Press
Date 2013 Aug 20
PMID 23954502
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

In bacteria, the highly conserved RsmA/CsrA family of RNA-binding proteins functions as global posttranscriptional regulators acting on mRNA translation and stability. Through phenotypic complementation of an rsmA mutant in Pseudomonas aeruginosa, we discovered a family member, termed RsmN. Elucidation of the RsmN crystal structure and that of the complex with a hairpin from the sRNA, RsmZ, reveals a uniquely inserted α helix, which redirects the polypeptide chain to form a distinctly different protein fold to the domain-swapped dimeric structure of RsmA homologs. The overall β sheet structure required for RNA recognition is, however, preserved with compensatory sequence and structure differences, allowing the RsmN dimer to target binding motifs in both structured hairpin loops and flexible disordered RNAs. Phylogenetic analysis indicates that, although RsmN appears unique to P. aeruginosa, homologous proteins with the inserted α helix are more widespread and arose as a consequence of a gene duplication event.

Citing Articles

Thermodynamic modeling of RsmA - mRNA interactions capture novel direct binding across the transcriptome.

Lukasiewicz A, Leistra A, Hoefner L, Monzon E, Gode C, Zorn B Front Mol Biosci. 2025; 12:1493891.

PMID: 40051501 PMC: 11882435. DOI: 10.3389/fmolb.2025.1493891.


Global Gac/Rsm regulatory system activates the biosynthesis of mupirocin by controlling the MupR/I quorum sensing system in sp. NCIMB 10586.

Cai Y, Huang P, Venturi V, Xiong R, Wang Z, Wang W Appl Environ Microbiol. 2025; 91(2):e0189624.

PMID: 39846735 PMC: 11837529. DOI: 10.1128/aem.01896-24.


Uncovering the GacS-mediated role in evolutionary progression through trajectory reconstruction in Pseudomonas aeruginosa.

Jiang B, Qiu H, Lu C, Lu M, Li Y, Dai W Nucleic Acids Res. 2024; 52(7):3856-3869.

PMID: 38477346 PMC: 11040156. DOI: 10.1093/nar/gkae187.


RNA target highlights in CASP15: Evaluation of predicted models by structure providers.

Kretsch R, Andersen E, Bujnicki J, Chiu W, Das R, Luo B Proteins. 2023; 91(12):1600-1615.

PMID: 37466021 PMC: 10792523. DOI: 10.1002/prot.26550.


Structural basis of sRNA RsmZ regulation of Pseudomonas aeruginosa virulence.

Jia X, Pan Z, Yuan Y, Luo B, Luo Y, Mukherjee S Cell Res. 2023; 33(4):328-330.

PMID: 36828938 PMC: 10066318. DOI: 10.1038/s41422-023-00786-3.


References
1.
Wong S, Akerley B . Environmental and genetic regulation of the phosphorylcholine epitope of Haemophilus influenzae lipooligosaccharide. Mol Microbiol. 2005; 55(3):724-38. DOI: 10.1111/j.1365-2958.2004.04439.x. View

2.
Heeb S, Fletcher M, Chhabra S, Diggle S, Williams P, Camara M . Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev. 2010; 35(2):247-74. PMC: 3053476. DOI: 10.1111/j.1574-6976.2010.00247.x. View

3.
Ang S, Horng Y, Shu J, Soo P, Liu J, Yi W . The role of RsmA in the regulation of swarming motility in Serratia marcescens. J Biomed Sci. 2001; 8(2):160-9. DOI: 10.1007/BF02256408. View

4.
Weilbacher T, Suzuki K, Dubey A, Wang X, Gudapaty S, Morozov I . A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol. 2003; 48(3):657-70. DOI: 10.1046/j.1365-2958.2003.03459.x. View

5.
Kay E, Dubuis C, Haas D . Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci U S A. 2005; 102(47):17136-41. PMC: 1287983. DOI: 10.1073/pnas.0505673102. View