» Articles » PMID: 23945778

Supersensitive Presynaptic Dopamine D2 Receptor Inhibition of the Striatopallidal Projection in Nigrostriatal Dopamine-deficient Mice

Overview
Journal J Neurophysiol
Specialties Neurology
Physiology
Date 2013 Aug 16
PMID 23945778
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The dopamine (DA) D2 receptor (D2R)-expressing medium spiny neurons (D2-MSNs) in the striatum project to and inhibit the GABAergic neurons in the globus pallidus (GP), forming an important link in the indirect pathway of the basal ganglia movement control circuit. These striatopallidal axon terminals express presynaptic D2Rs that inhibit GABA release and thus regulate basal ganglion function. Here we show that in transcription factor Pitx3 gene mutant mice with a severe DA loss in the dorsal striatum mimicking the DA denervation in Parkinson's disease (PD), the striatopallidal GABAergic synaptic transmission displayed a heightened sensitivity to presynaptic D2R-mediated inhibition with the dose-response curve shifted to the left, although the maximal inhibition was not changed. Functionally, low concentrations of DA were able to more efficaciously reduce the striatopallidal inhibition-induced pauses of GP neuron activity in DA-deficient Pitx3 mutant mice than in wild-type mice. These results demonstrate that presynaptic D2R inhibition of the striatopallidal synapse becomes supersensitized after DA loss. These supersensitive D2Rs may compensate for the lost DA in PD and also induce a strong disinhibition of GP neuron activity that may contribute to the motor-stimulating effects of dopaminergic treatments in PD.

Citing Articles

Dopamine-independent development and maintenance of mouse striatal medium spiny neuron dendritic spines.

Zhong M, Wang Y, Lin G, Liao F, Zhou F Neurobiol Dis. 2023; 181:106096.

PMID: 37001611 PMC: 10864017. DOI: 10.1016/j.nbd.2023.106096.


Exercise improves behavioral dysfunction and inhibits the spontaneous excitatory postsynaptic current of D2-medium spiny neurons.

Zhao G, Zhang D, Qiao D, Liu X Front Aging Neurosci. 2022; 14:1001256.

PMID: 36533169 PMC: 9752814. DOI: 10.3389/fnagi.2022.1001256.


Striatal Indirect Pathway Dysfunction Underlies Motor Deficits in a Mouse Model of Paroxysmal Dyskinesia.

Nelson A, Girasole A, Lee H, Ptacek L, Kreitzer A J Neurosci. 2022; 42(13):2835-2848.

PMID: 35165171 PMC: 8973425. DOI: 10.1523/JNEUROSCI.1614-20.2022.


Hyperactive Response of Direct Pathway Striatal Projection Neurons to L-dopa and D1 Agonism in Freely Moving Parkinsonian Mice.

Sagot B, Li L, Zhou F Front Neural Circuits. 2018; 12:57.

PMID: 30104963 PMC: 6077202. DOI: 10.3389/fncir.2018.00057.


Cyclic AMP-producing chemogenetic activation of indirect pathway striatal projection neurons and the downstream effects on the globus pallidus and subthalamic nucleus in freely moving mice.

Bouabid S, Zhou F J Neurochem. 2018; 145(6):436-448.

PMID: 29500819 PMC: 6030436. DOI: 10.1111/jnc.14331.


References
1.
Ding S, Li L, Zhou F . Presynaptic serotonergic gating of the subthalamonigral glutamatergic projection. J Neurosci. 2013; 33(11):4875-85. PMC: 3617555. DOI: 10.1523/JNEUROSCI.4111-12.2013. View

2.
Hedreen J . Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus. J Comp Neurol. 1999; 409(3):400-10. DOI: 10.1002/(sici)1096-9861(19990705)409:3<400::aid-cne5>3.0.co;2-4. View

3.
Day M, Wang Z, Ding J, An X, Ingham C, Shering A . Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci. 2006; 9(2):251-9. DOI: 10.1038/nn1632. View

4.
Fujiyama F, Sohn J, Nakano T, Furuta T, Nakamura K, Matsuda W . Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci. 2011; 33(4):668-77. DOI: 10.1111/j.1460-9568.2010.07564.x. View

5.
Rao P, Molinoff P, Joyce J . Ontogeny of dopamine D1 and D2 receptor subtypes in rat basal ganglia: a quantitative autoradiographic study. Brain Res Dev Brain Res. 1991; 60(2):161-77. DOI: 10.1016/0165-3806(91)90045-k. View