» Articles » PMID: 23931657

Genetically Encoded Light-activated Transcription for Spatiotemporal Control of Gene Expression and Gene Silencing in Mammalian Cells

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2013 Aug 13
PMID 23931657
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Photocaging provides a method to spatially and temporally control biological function and gene expression with high resolution. Proteins can be photochemically controlled through the site-specific installation of caging groups on amino acid side chains that are essential for protein function. The photocaging of a synthetic gene network using unnatural amino acid mutagenesis in mammalian cells was demonstrated with an engineered bacteriophage RNA polymerase. A caged T7 RNA polymerase was expressed in cells with an expanded genetic code and used in the photochemical activation of genes under control of an orthogonal T7 promoter, demonstrating tight spatial and temporal control. The synthetic gene expression system was validated with two reporter genes (luciferase and EGFP) and applied to the light-triggered transcription of short hairpin RNA constructs for the induction of RNA interference.

Citing Articles

Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion.

Charette M, Rosenblum C, Shade O, Deiters A Chem Rev. 2025; 125(4):1663-1717.

PMID: 39928721 PMC: 11869211. DOI: 10.1021/acs.chemrev.4c00224.


Photochemically Triggered, Transient, and Oscillatory Transcription Machineries Guide Temporal Modulation of Fibrinogenesis.

Dong J, Willner I J Am Chem Soc. 2024; 147(2):2216-2227.

PMID: 39740143 PMC: 11744759. DOI: 10.1021/jacs.4c16829.


Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.

De Faveri C, Mattheisen J, Sakmar T, Coin I Chem Rev. 2024; 124(22):12498-12550.

PMID: 39509680 PMC: 11613316. DOI: 10.1021/acs.chemrev.4c00181.


Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light.

Yamazaki H, Sugawara R, Takayama Y Front Bioeng Biotechnol. 2024; 12:1324757.

PMID: 39465004 PMC: 11502365. DOI: 10.3389/fbioe.2024.1324757.


Light-Activated Gene Expression System Using a Caging-Group-Free Photoactivatable Dye.

Nonomura T, Minoshima M, Kikuchi K Angew Chem Int Ed Engl. 2024; 64(4):e202416420.

PMID: 39444190 PMC: 11753602. DOI: 10.1002/anie.202416420.


References
1.
Young T, Schultz P . Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem. 2010; 285(15):11039-44. PMC: 2856976. DOI: 10.1074/jbc.R109.091306. View

2.
Wang K, Schmied W, Chin J . Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed Engl. 2012; 51(10):2288-97. DOI: 10.1002/anie.201105016. View

3.
Toettcher J, Voigt C, Weiner O, Lim W . The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. Nat Methods. 2010; 8(1):35-8. PMC: 3024327. DOI: 10.1038/nmeth.f.326. View

4.
Maksimova T, Mustayev A, Zaychikov E, Lyakhov D, Tunitskaya V, Akbarov A . Lys631 residue in the active site of the bacteriophage T7 RNA polymerase. Affinity labeling and site-directed mutagenesis. Eur J Biochem. 1991; 195(3):841-7. DOI: 10.1111/j.1432-1033.1991.tb15773.x. View

5.
Chalker J, Davis B . Chemical mutagenesis: selective post-expression interconversion of protein amino acid residues. Curr Opin Chem Biol. 2010; 14(6):781-9. DOI: 10.1016/j.cbpa.2010.10.007. View