» Articles » PMID: 23926041

A Place for Time: the Spatiotemporal Structure of Neural Dynamics During Natural Audition

Overview
Journal J Neurophysiol
Specialties Neurology
Physiology
Date 2013 Aug 9
PMID 23926041
Citations 64
Authors
Affiliations
Soon will be listed here.
Abstract

We use functional magnetic resonance imaging (fMRI) to analyze neural responses to natural auditory stimuli. We characterize the fMRI time series through the shape of the voxel power spectrum and find that the timescales of neural dynamics vary along a spatial gradient, with faster dynamics in early auditory cortex and slower dynamics in higher order brain regions. The timescale gradient is observed through the unsupervised clustering of the power spectra of individual brains, both in the presence and absence of a stimulus, and is enhanced in the stimulus-locked component that is shared across listeners. Moreover, intrinsically faster dynamics occur in areas that respond preferentially to momentary stimulus features, while the intrinsically slower dynamics occur in areas that integrate stimulus information over longer timescales. These observations connect the timescales of intrinsic neural dynamics to the timescales of information processing, suggesting a temporal organizing principle for neural computation across the cerebral cortex.

Citing Articles

Mapping and modeling age-related changes in intrinsic neural timescales.

Wu K, Gollo L Commun Biol. 2025; 8(1):167.

PMID: 39901043 PMC: 11791184. DOI: 10.1038/s42003-025-07517-x.


Incremental accumulation of linguistic context in artificial and biological neural networks.

Tikochinski R, Goldstein A, Meiri Y, Hasson U, Reichart R Nat Commun. 2025; 16(1):803.

PMID: 39824935 PMC: 11748659. DOI: 10.1038/s41467-025-56162-9.


Aberrant neural event segmentation during a continuous social narrative in trauma-exposed older adolescents and young adults.

Granger S, Olson E, Weinstein S, Vratimos I, Lynch B, Ren B Cogn Affect Behav Neurosci. 2025; .

PMID: 39789397 DOI: 10.3758/s13415-024-01252-2.


Temporal integration in human auditory cortex is predominantly yoked to absolute time, not structure duration.

Norman-Haignere S, Keshishian M, Devinsky O, Doyle W, McKhann G, Schevon C bioRxiv. 2024; .

PMID: 39386565 PMC: 11463558. DOI: 10.1101/2024.09.23.614358.


Atypical intrinsic neural timescale in the left angular gyrus in Alzheimer's disease.

Murai S, Mano T, Sanes J, Watanabe T Brain Commun. 2024; 6(4):fcae199.

PMID: 38993284 PMC: 11227993. DOI: 10.1093/braincomms/fcae199.


References
1.
Andrews-Hanna J, Reidler J, Sepulcre J, Poulin R, Buckner R . Functional-anatomic fractionation of the brain's default network. Neuron. 2010; 65(4):550-62. PMC: 2848443. DOI: 10.1016/j.neuron.2010.02.005. View

2.
He B, Zempel J, Snyder A, Raichle M . The temporal structures and functional significance of scale-free brain activity. Neuron. 2010; 66(3):353-69. PMC: 2878725. DOI: 10.1016/j.neuron.2010.04.020. View

3.
Birn R, Diamond J, Smith M, Bandettini P . Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage. 2006; 31(4):1536-48. DOI: 10.1016/j.neuroimage.2006.02.048. View

4.
Lerner Y, Honey C, Silbert L, Hasson U . Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. J Neurosci. 2011; 31(8):2906-15. PMC: 3089381. DOI: 10.1523/JNEUROSCI.3684-10.2011. View

5.
Baria A, Mansour A, Huang L, Baliki M, Cecchi G, Mesulam M . Linking human brain local activity fluctuations to structural and functional network architectures. Neuroimage. 2013; 73:144-55. PMC: 3632346. DOI: 10.1016/j.neuroimage.2013.01.072. View