» Articles » PMID: 23922839

Schiff Base Switch II Precedes the Retinal Thermal Isomerization in the Photocycle of Bacteriorhodopsin

Overview
Journal PLoS One
Date 2013 Aug 8
PMID 23922839
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

In bacteriorhodopsin, the order of molecular events that control the cytoplasmic or extracellular accessibility of the Schiff bases (SB) are not well understood. We use molecular dynamics simulations to study a process involved in the second accessibility switch of SB that occurs after its reprotonation in the N intermediate of the photocycle. We find that once protonated, the SB C15 = NZ bond switches from a cytoplasmic facing (13-cis, 15-anti) configuration to an extracellular facing (13-cis, 15-syn) configuration on the pico to nanosecond timescale. Significantly, rotation about the retinal's C13 = C14 double bond is not observed. The dynamics of the isomeric state transitions of the protonated SB are strongly influenced by the surrounding charges and dielectric effects of other buried ions, particularly D96 and D212. Our simulations indicate that the thermal isomerization of retinal from 13-cis back to all-trans likely occurs independently from and after the SB C15 = NZ rotation in the N-to-O transition.

Citing Articles

Opsins outside the eye and the skin: a more complex scenario than originally thought for a classical light sensor.

Moraes M, de Assis L, Provencio I, Castrucci A Cell Tissue Res. 2021; 385(3):519-538.

PMID: 34236517 DOI: 10.1007/s00441-021-03500-0.


Melanopsin, a Canonical Light Receptor, Mediates Thermal Activation of Clock Genes.

Moraes M, de Assis L, Magalhaes-Marques K, Poletini M, de Lima L, Castrucci A Sci Rep. 2017; 7(1):13977.

PMID: 29070825 PMC: 5656685. DOI: 10.1038/s41598-017-13939-3.


Existence of two O-like intermediates in the photocycle of rhodopsin II, a light-driven proton pump from a marine alga.

Tamogami J, Kikukawa T, Nara T, Demura M, Kimura-Someya T, Shirouzu M Biophys Physicobiol. 2017; 14:49-55.

PMID: 28560129 PMC: 5437830. DOI: 10.2142/biophysico.14.0_49.


Stable closure of the cytoplasmic half-channel is required for efficient proton transport at physiological membrane potentials in the bacteriorhodopsin catalytic cycle.

Wang T, Oppawsky C, Duan Y, Tittor J, Oesterhelt D, Facciotti M Biochemistry. 2014; 53(14):2380-90.

PMID: 24660845 PMC: 4004217. DOI: 10.1021/bi4013808.

References
1.
Brown L, Dioumaev A, Needleman R, Lanyi J . Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model. Biophys J. 1998; 75(3):1455-65. PMC: 1299820. DOI: 10.1016/S0006-3495(98)74064-0. View

2.
Mogi T, Stern L, Marti T, Chao B, Khorana H . Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc Natl Acad Sci U S A. 1988; 85(12):4148-52. PMC: 280383. DOI: 10.1073/pnas.85.12.4148. View

3.
Luecke H, Schobert B, Richter H, Cartailler J, Lanyi J . Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 1999; 291(4):899-911. DOI: 10.1006/jmbi.1999.3027. View

4.
Hermone A, Kuczera K . Free-energy simulations of the retinal cis --> trans isomerization in bacteriorhodopsin. Biochemistry. 1998; 37(9):2843-53. DOI: 10.1021/bi9717789. View

5.
Dioumaev A, Brown L, Needleman R, Lanyi J . Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin. Biochemistry. 2001; 40(38):11308-17. DOI: 10.1021/bi011027d. View