» Articles » PMID: 23921633

Detecting Alu Insertions from High-throughput Sequencing Data

Overview
Specialty Biochemistry
Date 2013 Aug 8
PMID 23921633
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

High-throughput sequencing technologies have allowed for the cataloguing of variation in personal human genomes. In this manuscript, we present alu-detect, a tool that combines read-pair and split-read information to detect novel Alus and their precise breakpoints directly from either whole-genome or whole-exome sequencing data while also identifying insertions directly in the vicinity of existing Alus. To set the parameters of our method, we use simulation of a faux reference, which allows us to compute the precision and recall of various parameter settings using real sequencing data. Applying our method to 100 bp paired Illumina data from seven individuals, including two trios, we detected on average 1519 novel Alus per sample. Based on the faux-reference simulation, we estimate that our method has 97% precision and 85% recall. We identify 808 novel Alus not previously described in other studies. We also demonstrate the use of alu-detect to study the local sequence and global location preferences for novel Alu insertions.

Citing Articles

An Auto-Reading probe system for detecting deletion mutations In liquid biopsy with direct quantification of mutation abundance.

Zhu B, Zhou J, He H, Liao Y, Li Q Heliyon. 2024; 10(16):e35530.

PMID: 39220964 PMC: 11365318. DOI: 10.1016/j.heliyon.2024.e35530.


Human Retrotransposons and Effective Computational Detection Methods for Next-Generation Sequencing Data.

Lee H, Min J, Mun S, Han K Life (Basel). 2022; 12(10).

PMID: 36295018 PMC: 9605557. DOI: 10.3390/life12101583.


AluMine: alignment-free method for the discovery of polymorphic Alu element insertions.

Puurand T, Kukuskina V, Pajuste F, Remm M Mob DNA. 2019; 10:31.

PMID: 31360240 PMC: 6639938. DOI: 10.1186/s13100-019-0174-3.


iMGEins: detecting novel mobile genetic elements inserted in individual genomes.

Bae J, Lee K, Islam M, Yim H, Park H, Rho M BMC Genomics. 2018; 19(1):944.

PMID: 30563451 PMC: 6299635. DOI: 10.1186/s12864-018-5290-9.


Discovery of rare, diagnostic Yb8/9 elements in diverse human populations.

Feusier J, Witherspoon D, Watkins W, Goubert C, Sasani T, Jorde L Mob DNA. 2017; 8:9.

PMID: 28770012 PMC: 5531096. DOI: 10.1186/s13100-017-0093-0.


References
1.
Solyom S, Kazazian Jr H . Mobile elements in the human genome: implications for disease. Genome Med. 2012; 4(2):12. PMC: 3392758. DOI: 10.1186/gm311. View

2.
Zhang W, Edwards A, Fan W, Deininger P, Zhang K . Alu distribution and mutation types of cancer genes. BMC Genomics. 2011; 12:157. PMC: 3074553. DOI: 10.1186/1471-2164-12-157. View

3.
Abecasis G, Altshuler D, Auton A, Brooks L, Durbin R, Gibbs R . A map of human genome variation from population-scale sequencing. Nature. 2010; 467(7319):1061-73. PMC: 3042601. DOI: 10.1038/nature09534. View

4.
Jurka J, Kapitonov V, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J . Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005; 110(1-4):462-7. DOI: 10.1159/000084979. View

5.
Salem A, Kilroy G, Watkins W, Jorde L, Batzer M . Recently integrated Alu elements and human genomic diversity. Mol Biol Evol. 2003; 20(8):1349-61. DOI: 10.1093/molbev/msg150. View