» Articles » PMID: 23894673

Accelerated Coronary Angiogenesis by Vegfr1-knockout Endocardial Cells

Overview
Journal PLoS One
Date 2013 Jul 30
PMID 23894673
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

During mouse heart development, ventricular endocardial cells give rise to the coronary arteries by angiogenesis. Myocardially-derived vascular endothelial growth factor-a (Vegfa) regulates embryonic coronary angiogenesis through vascular endothelial growth factor-receptor 2 (Vegfr2) expressed in the endocardium. In this study, we investigated the role of endocardially-produced soluble Vegfr1 (sVegfr1) in the coronary angiogenesis. We deleted sVegfr1 in the endocardium of the developing mouse heart and found that this deletion resulted in a precocious formation of coronary plexuses. Using an ex vivo coronary angiogenesis assay, we showed that the Vegfr1-null ventricular endocardial cells underwent excessive angiogenesis and generated extensive endothelial tubular networks. We also revealed by qPCR analysis that expression of genes involved in the Vegf-Notch pathway was augmented in the Vegfr1-null hearts. We further showed that inhibition of Notch signaling blocked the formation of coronary plexuses by the ventricular endocardial cells. These results establish that Vegfr1 produced in the endocardium negatively regulates embryonic coronary angiogenesis, possibly by limiting the Vegf-Notch signaling.

Citing Articles

Hypoxia regulate developmental coronary angiogenesis potentially through VEGF-R2- and SOX17-mediated signaling.

Vitali H, Kuschel B, Sherpa C, Jones B, Jacob N, Madiha S Dev Dyn. 2024; 254(2):174-188.

PMID: 39360476 PMC: 11810610. DOI: 10.1002/dvdy.750.


Congenital Coronary Blood Vessel Anomalies: Animal Models and the Integration of Developmental Mechanisms.

Guadix J, Ruiz-Villalba A, Perez-Pomares J Adv Exp Med Biol. 2024; 1441:817-831.

PMID: 38884751 DOI: 10.1007/978-3-031-44087-8_49.


Prerequisite endocardial-mesenchymal transition for murine cardiac trabecular angiogenesis.

Lu P, Wu B, Wang Y, Russell M, Liu Y, Bernard D Dev Cell. 2023; 58(9):791-805.e4.

PMID: 37023750 PMC: 10656710. DOI: 10.1016/j.devcel.2023.03.009.


Perinatal angiogenesis from pre-existing coronary vessels via DLL4-NOTCH1 signalling.

Lu P, Wang Y, Liu Y, Wang Y, Wu B, Zheng D Nat Cell Biol. 2021; 23(9):967-977.

PMID: 34497373 DOI: 10.1038/s41556-021-00747-1.


Coordination of endothelial cell positioning and fate specification by the epicardium.

Quijada P, Trembley M, Misra A, Myers J, Baker C, Perez-Hernandez M Nat Commun. 2021; 12(1):4155.

PMID: 34230480 PMC: 8260743. DOI: 10.1038/s41467-021-24414-z.


References
1.
Drake C, Fleming P . Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood. 2000; 95(5):1671-9. View

2.
Olivey H, Svensson E . Epicardial-myocardial signaling directing coronary vasculogenesis. Circ Res. 2010; 106(5):818-32. PMC: 2843003. DOI: 10.1161/CIRCRESAHA.109.209197. View

3.
de la Pompa J, Timmerman L, Takimoto H, Yoshida H, Elia A, Samper E . Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature. 1998; 392(6672):182-6. DOI: 10.1038/32419. View

4.
Sousa V, Miyoshi G, Hjerling-Leffler J, Karayannis T, Fishell G . Characterization of Nkx6-2-derived neocortical interneuron lineages. Cereb Cortex. 2009; 19 Suppl 1:i1-10. PMC: 2693535. DOI: 10.1093/cercor/bhp038. View

5.
Siekmann A, Lawson N . Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature. 2007; 445(7129):781-4. DOI: 10.1038/nature05577. View