» Articles » PMID: 23893429

Animal Models of Axon Regeneration After Spinal Cord Injury

Overview
Journal Neurosci Bull
Specialty Neurology
Date 2013 Jul 30
PMID 23893429
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

With advances in genetic and imaging techniques, investigating axon regeneration after spinal cord injury in vivo is becoming more common in the literature. However, there are many issues to consider when using animal models of axon regeneration, including species, strains and injury models. No single particular model suits all types of experiments and each hypothesis being tested requires careful selection of the appropriate animal model. in this review, we describe several commonly-used animal models of axon regeneration in the spinal cord and discuss their advantages and disadvantages.

Citing Articles

In vivo imaging in mouse spinal cord reveals that microglia prevent degeneration of injured axons.

Wu W, He Y, Chen Y, Fu Y, He S, Liu K Nat Commun. 2024; 15(1):8837.

PMID: 39397028 PMC: 11471772. DOI: 10.1038/s41467-024-53218-0.


Astrocyte-Neuron Interactions in Spinal Cord Injury.

Reyes C, Mokalled M Adv Neurobiol. 2024; 39:213-231.

PMID: 39190077 PMC: 11684398. DOI: 10.1007/978-3-031-64839-7_9.


Co-targeting myelin inhibitors and CSPGs markedly enhances regeneration of GDNF-stimulated, but not conditioning-lesioned, sensory axons into the spinal cord.

Zhai J, Kim H, Han S, Manire M, Yoo R, Pang S Elife. 2021; 10.

PMID: 33942723 PMC: 8139830. DOI: 10.7554/eLife.63050.


New Model of Ventral Spinal Cord Lesion Induced by Balloon Compression in Rats.

Krupa P, Stepankova K, Kwok J, Fawcett J, Cimermanova V, Jendelova P Biomedicines. 2020; 8(11).

PMID: 33167447 PMC: 7694490. DOI: 10.3390/biomedicines8110477.


Innovative mouse model mimicking human-like features of spinal cord injury: efficacy of Docosahexaenoic acid on acute and chronic phases.

Marinelli S, Vacca V, De Angelis F, Pieroni L, Orsini T, Parisi C Sci Rep. 2019; 9(1):8883.

PMID: 31222077 PMC: 6586623. DOI: 10.1038/s41598-019-45037-x.


References
1.
Dimou L, Schnell L, Montani L, Duncan C, Simonen M, Schneider R . Nogo-A-deficient mice reveal strain-dependent differences in axonal regeneration. J Neurosci. 2006; 26(21):5591-603. PMC: 6675256. DOI: 10.1523/JNEUROSCI.1103-06.2006. View

2.
Hoffman P . A conditioning lesion induces changes in gene expression and axonal transport that enhance regeneration by increasing the intrinsic growth state of axons. Exp Neurol. 2009; 223(1):11-8. DOI: 10.1016/j.expneurol.2009.09.006. View

3.
Lee J, Geoffroy C, Chan A, Tolentino K, Crawford M, Leal M . Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron. 2010; 66(5):663-70. PMC: 2896331. DOI: 10.1016/j.neuron.2010.05.002. View

4.
Gao M, Lu P, Bednark B, Lynam D, Conner J, Sakamoto J . Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection. Biomaterials. 2012; 34(5):1529-36. PMC: 3518618. DOI: 10.1016/j.biomaterials.2012.10.070. View

5.
Kigerl K, McGaughy V, Popovich P . Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J Comp Neurol. 2005; 494(4):578-94. PMC: 2655318. DOI: 10.1002/cne.20827. View