» Articles » PMID: 23874267

Detection of Dopamine Neurotransmission in "real Time"

Overview
Journal Front Neurosci
Date 2013 Jul 23
PMID 23874267
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Current imaging techniques have limited ability to detect neurotransmitters released during brain processing. It is a critical limitation because neurotransmitters have significant control over the brain activity. In this context, recent development of single-scan dynamic molecular imaging technique is important because it allows detection, mapping, and measurement of dopamine released in the brain during task performance. The technique exploits the competition between endogenously released dopamine and its receptor ligand for occupancy of receptor sites. Dopamine released during task performance is detected by dynamically measuring concentration of intravenously injected radiolabeled ligand using a positron emission tomography (PET) camera. Based on the ligand concentration, values of receptor kinetic parameters are estimated. These estimates allow detection of dopamine released in the human brain during task performance.

Citing Articles

Highly sensitive amperometric sensors based on laccase-mimetic nanozymes for the detection of dopamine.

Demkiv O, Nogala W, Stasyuk N, Klepach H, Danysh T, Gonchar M RSC Adv. 2024; 14(8):5472-5478.

PMID: 38352675 PMC: 10862099. DOI: 10.1039/d3ra07587g.


Cognitive performance, creativity and stress levels of neurotypical young adults under different white noise levels.

Awada M, Becerik-Gerber B, Lucas G, Roll S Sci Rep. 2022; 12(1):14566.

PMID: 36028546 PMC: 9418159. DOI: 10.1038/s41598-022-18862-w.


Advances in simultaneous PET/MR for imaging neuroreceptor function.

Sander C, Hansen H, Wey H J Cereb Blood Flow Metab. 2020; 40(6):1148-1166.

PMID: 32169011 PMC: 7238372. DOI: 10.1177/0271678X20910038.


Early-Life Stress Affects Stress-Related Prefrontal Dopamine Activity in Healthy Adults, but Not in Individuals with Psychotic Disorder.

Kasanova Z, Hernaus D, Vaessen T, van Amelsvoort T, Winz O, Heinzel A PLoS One. 2016; 11(3):e0150746.

PMID: 27007554 PMC: 4805207. DOI: 10.1371/journal.pone.0150746.


PET Neurochemical Imaging Modes.

Placzek M, Zhao W, Wey H, Morin T, Hooker J Semin Nucl Med. 2015; 46(1):20-7.

PMID: 26687854 PMC: 5709996. DOI: 10.1053/j.semnuclmed.2015.09.001.


References
1.
Badgaiyan R, Fischman A, Alpert N . Dopamine release during human emotional processing. Neuroimage. 2009; 47(4):2041-5. PMC: 2740985. DOI: 10.1016/j.neuroimage.2009.06.008. View

2.
Farde L, Suhara T, Nyberg S, Karlsson P, Nakashima Y, Hietala J . A PET-study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacology (Berl). 1998; 133(4):396-404. DOI: 10.1007/s002130050420. View

3.
Casey B, Thomas K, Welsh T, Badgaiyan R, Eccard C, Jennings J . Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proc Natl Acad Sci U S A. 2000; 97(15):8728-33. PMC: 27016. DOI: 10.1073/pnas.97.15.8728. View

4.
Gunn R, Lammertsma A, Hume S, Cunningham V . Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage. 1998; 6(4):279-87. DOI: 10.1006/nimg.1997.0303. View

5.
Badgaiyan R, Fischman A, Alpert N . Striatal dopamine release during unrewarded motor task in human volunteers. Neuroreport. 2003; 14(11):1421-4. DOI: 10.1097/00001756-200308060-00003. View