» Articles » PMID: 23867315

Systemically Delivered Measles Virus-infected Mesenchymal Stem Cells Can Evade Host Immunity to Inhibit Liver Cancer Growth

Overview
Journal J Hepatol
Publisher Elsevier
Specialty Gastroenterology
Date 2013 Jul 23
PMID 23867315
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

Background & Aims: Although attenuated measles virus (MV) has demonstrated potent oncolytic activities towards human cancers, it has not yet been widely adopted into clinical practice. One of the major hurdles is the presence of pre-existing anti-MV immunity in the recipients. In this study, we have evaluated the combination of the potent oncolytic activity of the attenuated MV with the unique immunoprivileged and tumor-tropic biological properties of human bone marrow-derived mesenchymal stem cells (BM-hMSCs) to combat human hepatocellular carcinoma (HCC), orthotopically implanted in SCID mice, passively immunized with human neutralizing antibodies against MV as a preclinical model.

Methods: SCID mice were orthotopically implanted with patient-derived HCC tissues and established HCC cell lines. SCID mice were passively immunized with human neutralizing anti-measles antibodies. Bioluminescence and fluorescence imaging were employed to monitor the ability of systemically delivered MV-infected BM-hMSCs to infiltrate the implanted tumors and their effects on tumor growth.

Results: Systemically delivered MV-infected BM-hMSCs homed to the HCC tumors implanted orthotopically in the liver and it was evidenced that BM-hMSCs could transfer MV infectivity to HCC via heterofusion. Furthermore, therapy with MV-infected BM-hMSCs resulted in significant inhibition of tumor growth in both measles antibody-naïve and passively-immunized SCID mice. By contrast, when cell-free MV viruses were delivered systemically, antitumor activity was evident only in measles antibody-naïve SCID mice.

Conclusions: MV-infected BM-hMSCs cell delivery system provides a feasible strategy to elude the presence of immunity against MV in most of the potential cancer patients to be treated with the oncolytic MV viruses.

Citing Articles

Engineered mesenchymal stem/stromal cells against cancer.

Shi Y, Zhang J, Li Y, Feng C, Shao C, Shi Y Cell Death Dis. 2025; 16(1):113.

PMID: 39971901 PMC: 11839947. DOI: 10.1038/s41419-025-07443-0.


Engineered Mesenchymal Stem Cells as Treatment for Cancers: Opportunities, Clinical Applications and Challenges.

Shamsul Kamal A, Fakiruddin K, Bobbo K, Ling K, Vidyadaran S, Abdullah S Malays J Med Sci. 2024; 31(5):56-82.

PMID: 39416732 PMC: 11477465. DOI: 10.21315/mjms2024.31.5.5.


Innovative Strategies for Liver Transplantation: The Role of Mesenchymal Stem Cells and Their Cell-Free Derivatives.

Akabane M, Imaoka Y, Kawashima J, Endo Y, Schenk A, Sasaki K Cells. 2024; 13(19.

PMID: 39404368 PMC: 11475694. DOI: 10.3390/cells13191604.


Bioengineered Mesenchymal Stem/Stromal Cells in Anti-Cancer Therapy: Current Trends and Future Prospects.

Gil-Chinchilla J, Zapata A, Moraleda J, Garcia-Bernal D Biomolecules. 2024; 14(7).

PMID: 39062449 PMC: 11275142. DOI: 10.3390/biom14070734.


Emerging delivery strategy for oncolytic virotherapy.

Zhu J, Ma J, Huang M, Deng H, Shi G Mol Ther Oncol. 2024; 32(2):200809.

PMID: 38845744 PMC: 11153257. DOI: 10.1016/j.omton.2024.200809.


References
1.
Russell S, Peng K, Bell J . Oncolytic virotherapy. Nat Biotechnol. 2012; 30(7):658-70. PMC: 3888062. DOI: 10.1038/nbt.2287. View

2.
Peng K, Facteau S, Wegman T, OKane D, Russell S . Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med. 2002; 8(5):527-31. DOI: 10.1038/nm0502-527. View

3.
Clavien P, Lesurtel M, Bossuyt P, Gores G, Langer B, Perrier A . Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. Lancet Oncol. 2011; 13(1):e11-22. PMC: 3417764. DOI: 10.1016/S1470-2045(11)70175-9. View

4.
Esolen L, Ward B, Moench T, Griffin D . Infection of monocytes during measles. J Infect Dis. 1993; 168(1):47-52. DOI: 10.1093/infdis/168.1.47. View

5.
Galanis E, Hartmann L, Cliby W, Long H, Peethambaram P, Barrette B . Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 2010; 70(3):875-82. PMC: 2890216. DOI: 10.1158/0008-5472.CAN-09-2762. View