» Articles » PMID: 23867287

Quantification of Magnetic Nanoparticles with Low Frequency Magnetic Fields: Compensating for Relaxation Effects

Overview
Journal Nanotechnology
Specialty Biotechnology
Date 2013 Jul 23
PMID 23867287
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Quantifying the number of nanoparticles present in tissue is central to many in vivo and in vitro applications. Magnetic nanoparticles can be detected with high sensitivity both in vivo and in vitro using the harmonics of their magnetization produced in a sinusoidal magnetic field. However, relaxation effects damp the magnetic harmonics rendering them of limited use in quantification. We show that an accurate measure of the number of nanoparticles can be made by correcting for relaxation effects. Correction for relaxation reduced errors of 50% for larger nanoparticles in high relaxation environments to 2%. The result is a method of nanoparticle quantification suitable for in vivo and in vitro applications including histopathology assays, quantitative imaging, drug delivery and thermal therapy preparation.

Citing Articles

Magnetic Particle Spectroscopy for Point-of-Care: A Review on Recent Advances.

Yari P, Rezaei B, Dey C, Chugh V, Veerla N, Wang J Sensors (Basel). 2023; 23(9).

PMID: 37177614 PMC: 10181768. DOI: 10.3390/s23094411.


Novel Benchtop Magnetic Particle Spectrometer for Process Monitoring of Magnetic Nanoparticle Synthesis.

Lowa N, Gutkelch D, Welge E, Welz R, Meier F, Baki A Nanomaterials (Basel). 2020; 10(11).

PMID: 33213004 PMC: 7698567. DOI: 10.3390/nano10112277.


Identifying in vivo inflammation using magnetic nanoparticle spectra.

Weaver J, Ness D, Fields J, Jyoti D, Gordon-Wylie S, Berwin B Phys Med Biol. 2020; 65(12):125003.

PMID: 32311682 PMC: 8300861. DOI: 10.1088/1361-6560/ab8afd.


Heating Efficiency of Triple Vortex State Cylindrical Magnetic Nanoparticles.

Wong D, Gan W, Teo Y, Lew W Nanoscale Res Lett. 2019; 14(1):376.

PMID: 31845087 PMC: 6915247. DOI: 10.1186/s11671-019-3169-6.


Quantification of magnetic nanoparticles by compensating for multiple environment changes simultaneously.

Shi Y, Jyoti D, Gordon-Wylie S, Weaver J Nanoscale. 2019; 12(1):195-200.

PMID: 31807744 PMC: 6936736. DOI: 10.1039/c9nr08258a.


References
1.
Peiris P, Bauer L, Toy R, Tran E, Pansky J, Doolittle E . Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano. 2012; 6(5):4157-68. PMC: 3358486. DOI: 10.1021/nn300652p. View

2.
Ferguson R, Minard K, Krishnan K . Optimization of nanoparticle core size for magnetic particle imaging. J Magn Magn Mater. 2009; 321(10):1548-1551. PMC: 2709850. DOI: 10.1016/j.jmmm.2009.02.083. View

3.
Reeves D, Weaver J . Simulations of magnetic nanoparticle Brownian motion. J Appl Phys. 2013; 112(12):124311. PMC: 3537703. DOI: 10.1063/1.4770322. View

4.
Jun Y, Seo J, Cheon J . Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res. 2008; 41(2):179-89. DOI: 10.1021/ar700121f. View

5.
Lopez A, Gutierrez L, Lazaro F . The role of dipolar interaction in the quantitative determination of particulate magnetic carriers in biological tissues. Phys Med Biol. 2007; 52(16):5043-56. DOI: 10.1088/0031-9155/52/16/022. View