» Articles » PMID: 23865481

Oxaliplatin Induces Different Cellular and Molecular Chemoresistance Patterns in Colorectal Cancer Cell Lines of Identical Origins

Overview
Journal BMC Genomics
Publisher Biomed Central
Specialty Genetics
Date 2013 Jul 20
PMID 23865481
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Cancer cells frequently adopt cellular and molecular alterations and acquire resistance to cytostatic drugs. Chemotherapy with oxaliplatin is among the leading treatments for colorectal cancer with a response rate of 50%, inducing intrastrand cross-links on the DNA. Despite of this drug's efficiency, resistance develops in nearly all metastatic patients. Chemoresistance being of crucial importance for the drug's clinical efficiency this study aimed to contribute to the identification and description of some cellular and molecular alterations induced by prolonged oxaliplatin therapy. Resistance to oxaliplatin was induced in Colo320 (Colo320R) and HT-29 (HT-29R) colorectal adenocarcinoma cell lines by exposing the cells to increasing concentrations of the drug. Alterations in morphology, cytotoxicity, DNA cross-links formation and gene expression profiles were assessed in the parental and resistant variants with microscopy, MTT, alkaline comet and pangenomic microarray assays, respectively.

Results: Morphology analysis revealed epithelial-to-mesenchymal transition in the resistant vs parental cells suggesting alterations of the cells' adhesion complexes, through which they acquire increased invasiveness and adherence. Cytotoxicity measurements demonstrated resistance to oxaliplatin in both cell lines; Colo320 being more sensitive than HT-29 to this drug (P < 0.001). The treatment with oxaliplatin caused major DNA cross-links in both parental cell lines; in Colo320R small amounts of DNA cross-links were still detectable, while in HT-29R not. We identified 441 differentially expressed genes in Colo320R and 613 in HT-29R as compared to their parental counterparts (at least 1.5 -fold up- or down- regulation, p < 0.05). More disrupted functions and pathways were detected in HT-29R cell line than in Colo320R, involving genes responsible for apoptosis inhibition, cellular proliferation and epithelial-to-mesenchymal transition. Several upstream regulators were detected as activated in HT-29R cell line, but not in Colo320R.

Conclusions: Our findings revealed a more resistant phenotype in HT-29R as compared to Colo320R and different cellular and molecular chemoresistance patterns induced by prolonged treatment with oxaliplatin in cell lines with identical origins (colorectal adenocarcinomas).

Citing Articles

Licochalcone D Exerts Antitumor Activity in Human Colorectal Cancer Cells by Inducing ROS Generation and Phosphorylating JNK and p38 MAPK.

Lee S, Joo S, Cho S, Yoon G, Choi Y, Park J Biomol Ther (Seoul). 2025; 33(2):344-354.

PMID: 39933827 PMC: 11893492. DOI: 10.4062/biomolther.2024.123.


CHD1L Inhibitor OTI-611 Synergizes with Chemotherapy to Enhance Antitumor Efficacy and Prolong Survival in Colorectal Cancer Mouse Models.

Sala R, Esquer H, Kellett T, Clune S, Awolade P, Pike L Int J Mol Sci. 2024; 25(23).

PMID: 39684869 PMC: 11641930. DOI: 10.3390/ijms252313160.


Licochalcone B Induces ROS-Dependent Apoptosis in Oxaliplatin-Resistant Colorectal Cancer Cells via p38/JNK MAPK Signaling.

Kwak A, Kim W, Lee S, Yoon G, Cho S, Kim K Antioxidants (Basel). 2023; 12(3).

PMID: 36978904 PMC: 10045364. DOI: 10.3390/antiox12030656.


Computational Tactics for Precision Cancer Network Biology.

Park H, Miyano S Int J Mol Sci. 2022; 23(22).

PMID: 36430875 PMC: 9695754. DOI: 10.3390/ijms232214398.


GSDMD-dependent pyroptotic induction by a multivalent CXCR4-targeted nanotoxin blocks colorectal cancer metastases.

Sala R, Rioja-Blanco E, Serna N, Sanchez-Garcia L, Alamo P, Alba-Castellon L Drug Deliv. 2022; 29(1):1384-1397.

PMID: 35532120 PMC: 9090371. DOI: 10.1080/10717544.2022.2069302.


References
1.
Duque J, Fresno M, Iniguez M . Expression and function of the nuclear factor of activated T cells in colon carcinoma cells: involvement in the regulation of cyclooxygenase-2. J Biol Chem. 2005; 280(10):8686-93. DOI: 10.1074/jbc.M413076200. View

2.
Misset J, Bleiberg H, Sutherland W, Bekradda M, Cvitkovic E . Oxaliplatin clinical activity: a review. Crit Rev Oncol Hematol. 2000; 35(2):75-93. DOI: 10.1016/s1040-8428(00)00070-6. View

3.
Kumar A, Xu J, Brady S, Gao H, Yu D, Reuben J . Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells. PLoS One. 2010; 5(10):e13390. PMC: 2953521. DOI: 10.1371/journal.pone.0013390. View

4.
Desoize B, Madoulet C . Particular aspects of platinum compounds used at present in cancer treatment. Crit Rev Oncol Hematol. 2002; 42(3):317-25. DOI: 10.1016/s1040-8428(01)00219-0. View

5.
Hovhannisyan G, Haroutunyan T, Arutyunyan R . Evaluation of cisplatin-DNA crosslinks formation with UV-C application by the alkaline Comet-assay. Exp Oncol. 2004; 26(3):240-2. View