» Articles » PMID: 23821667

Sulfolobus Chromatin Proteins Modulate Strand Displacement by DNA Polymerase B1

Overview
Specialty Biochemistry
Date 2013 Jul 4
PMID 23821667
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Strand displacement by a DNA polymerase serves a key role in Okazaki fragment maturation, which involves displacement of the RNA primer of the preexisting Okazaki fragment into a flap structure, and subsequent flap removal and fragment ligation. We investigated the role of Sulfolobus chromatin proteins Sso7d and Cren7 in strand displacement by DNA polymerase B1 (PolB1) from the hyperthermophilic archaeon Sulfolobus solfataricus. PolB1 showed a robust strand displacement activity and was capable of synthesizing thousands of nucleotides on a DNA-primed 72-nt single-stranded circular DNA template. This activity was inhibited by both Sso7d and Cren7, which limited the flap length to 3-4 nt at saturating concentrations. However, neither protein inhibited RNA displacement on an RNA-primed single-stranded DNA minicircle by PolB1. Strand displacement remained sensitive to modulation by the chromatin proteins when PolB1 was in association with proliferating cell nuclear antigen. Inhibition of DNA instead of RNA strand displacement by the chromatin proteins is consistent with the finding that double-stranded DNA was more efficiently bound and stabilized than an RNA:DNA duplex by these proteins. Our results suggest that Sulfolobus chromatin proteins modulate strand displacement by PolB1, permitting efficient removal of the RNA primer while inhibiting excessive displacement of the newly synthesized DNA strand during Okazaki fragment maturation.

Citing Articles

DNA Polymerase B1 Binding Protein 1 Is Important for DNA Repair by Holoenzyme PolB1 in the Extremely Thermophilic Crenarchaeon .

Miyabayashi H, Sakai H, Kurosawa N Microorganisms. 2021; 9(2).

PMID: 33672533 PMC: 7923795. DOI: 10.3390/microorganisms9020439.


Methylation deficiency of chromatin proteins is a non-mutational and epigenetic-like trait in evolved lines of the archaeon .

Johnson T, Payne S, Grove R, McCarthy S, Oeltjen E, Mach C J Biol Chem. 2019; 294(19):7821-7832.

PMID: 30918025 PMC: 6514617. DOI: 10.1074/jbc.RA118.006469.


Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme.

Yan J, Beattie T, Rojas A, Schermerhorn K, Gristwood T, Trinidad J Nat Commun. 2017; 8:15075.

PMID: 28462924 PMC: 5418573. DOI: 10.1038/ncomms15075.


The Sulfolobus solfataricus GINS Complex Stimulates DNA Binding and Processive DNA Unwinding by Minichromosome Maintenance Helicase.

Lang S, Huang L J Bacteriol. 2015; 197(21):3409-20.

PMID: 26283767 PMC: 4621065. DOI: 10.1128/JB.00496-15.


Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea.

Visone V, Vettone A, Serpe M, Valenti A, Perugino G, Rossi M Int J Mol Sci. 2014; 15(9):17162-87.

PMID: 25257534 PMC: 4200833. DOI: 10.3390/ijms150917162.


References
1.
Lai X, Shao H, Hao F, Huang L . Biochemical characterization of an ATP-dependent DNA ligase from the hyperthermophilic crenarchaeon Sulfolobus shibatae. Extremophiles. 2002; 6(6):469-77. DOI: 10.1007/s00792-002-0284-5. View

2.
Nick McElhinny S, Gordenin D, Stith C, Burgers P, Kunkel T . Division of labor at the eukaryotic replication fork. Mol Cell. 2008; 30(2):137-44. PMC: 2654179. DOI: 10.1016/j.molcel.2008.02.022. View

3.
Driessen R, Meng H, Suresh G, Shahapure R, Lanzani G, Priyakumar U . Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing rigid bends. Nucleic Acids Res. 2012; 41(1):196-205. PMC: 3592393. DOI: 10.1093/nar/gks1053. View

4.
McAfee J, Edmondson S, Datta P, Shriver J, Gupta R . Gene cloning, expression, and characterization of the Sac7 proteins from the hyperthermophile Sulfolobus acidocaldarius. Biochemistry. 1995; 34(31):10063-77. DOI: 10.1021/bi00031a031. View

5.
Turchi J, Huang L, Murante R, Kim Y, Bambara R . Enzymatic completion of mammalian lagging-strand DNA replication. Proc Natl Acad Sci U S A. 1994; 91(21):9803-7. PMC: 44905. DOI: 10.1073/pnas.91.21.9803. View