The Homologous Recombination Machinery Modulates the Formation of RNA-DNA Hybrids and Associated Chromosome Instability
Authors
Affiliations
Genome instability in yeast and mammals is caused by RNA-DNA hybrids that form as a result of defects in different aspects of RNA biogenesis. We report that in yeast mutants defective for transcription repression and RNA degradation, hybrid formation requires Rad51p and Rad52p. These proteins normally promote DNA-DNA strand exchange in homologous recombination. We suggest they also directly promote the DNA-RNA strand exchange necessary for hybrid formation since we observed accumulation of Rad51p at a model hybrid-forming locus. Furthermore, we provide evidence that Rad51p mediates hybridization of transcripts to homologous chromosomal loci distinct from their site of synthesis. This hybrid formation in trans amplifies the genome-destabilizing potential of RNA and broadens the exclusive co-transcriptional models that pervade the field. The deleterious hybrid-forming activity of Rad51p is counteracted by Srs2p, a known Rad51p antagonist. Thus Srs2p serves as a novel anti-hybrid mechanism in vivo. DOI:http://dx.doi.org/10.7554/eLife.00505.001.
DNA lesions can frequently precede DNA:RNA hybrid accumulation.
Mangione R, Pierce S, Zheng M, Martin R, Goncalves C, Kumar A Nat Commun. 2025; 16(1):2401.
PMID: 40064914 PMC: 11893903. DOI: 10.1038/s41467-025-57588-x.
Mechanisms underlining R-loop biology and implications for human disease.
Liu J, Li F, Cao Y, Lv Y, Lei K, Tu Z Front Cell Dev Biol. 2025; 13:1537731.
PMID: 40061014 PMC: 11885306. DOI: 10.3389/fcell.2025.1537731.
Beyond the Synapse: and FMRP Molecular Mechanisms in the Nucleus.
Hansen N, Dischler A, Dias C Int J Mol Sci. 2025; 26(1.
PMID: 39796070 PMC: 11720320. DOI: 10.3390/ijms26010214.
The hidden architects of the genome: a comprehensive review of R-loops.
Yadav C, Yadav R, Nanda S, Ranga S, Ahuja P Mol Biol Rep. 2024; 51(1):1095.
PMID: 39460836 DOI: 10.1007/s11033-024-10025-6.
RAD51 regulates eukaryotic chromatin motions in the absence of DNA damage.
Maarouf A, Iqbal F, Sanaullah S, Locatelli M, Atanasiu A, Kolbin D Mol Biol Cell. 2024; 35(11):ar136.
PMID: 39292916 PMC: 11617103. DOI: 10.1091/mbc.E24-04-0188.