» Articles » PMID: 23774888

Synchronized Regulation of Different Zwitterionic Metabolites in the Osmoadaption of Phytoplankton

Overview
Journal Mar Drugs
Publisher MDPI
Specialties Biology
Pharmacology
Date 2013 Jun 19
PMID 23774888
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

The ability to adapt to different seawater salinities is essential for cosmopolitan marine phytoplankton living in very diverse habitats. In this study, we examined the role of small zwitterionic metabolites in the osmoadaption of two common microalgae species Emiliania huxleyi and Prorocentrum minimum. By cultivation of the algae under salinities between 16‰ and 38‰ and subsequent analysis of dimethylsulfoniopropionate (DMSP), glycine betaine (GBT), gonyol, homarine, trigonelline, dimethylsulfonioacetate, trimethylammonium propionate, and trimethylammonium butyrate using HPLC-MS, we could reveal two fundamentally different osmoadaption mechanisms. While E. huxleyi responded with cell size reduction and a nearly constant ratio between the major metabolites DMSP, GBT and homarine to increasing salinity, osmolyte composition of P. minimum changed dramatically. In this alga DMSP concentration remained nearly constant at 18.6 mM between 20‰ and 32‰ but the amount of GBT and dimethylsulfonioacetate increased from 4% to 30% of total investigated osmolytes. Direct quantification of zwitterionic metabolites via LC-MS is a powerful tool to unravel the complex osmoadaption and regulation mechanisms of marine phytoplankton.

Citing Articles

Population genomic analyses reveal that salinity and geographic isolation drive diversification in a free-living protist.

Rengefors K, Annenkova N, Wallenius J, Svensson M, Kremp A, Ahren D Sci Rep. 2024; 14(1):4986.

PMID: 38424140 PMC: 10904836. DOI: 10.1038/s41598-024-55362-5.


Abundant production of dimethylsulfoniopropionate as a cryoprotectant by freshwater phytoplanktonic dinoflagellates in ice-covered Lake Baikal.

Toda K, Obolkin V, Ohira S, Saeki K Commun Biol. 2023; 6(1):1194.

PMID: 38001159 PMC: 10674015. DOI: 10.1038/s42003-023-05573-9.


Algal blooms in the ocean: hot spots for chemically mediated microbial interactions.

Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A Nat Rev Microbiol. 2023; 22(3):138-154.

PMID: 37833328 DOI: 10.1038/s41579-023-00975-2.


Microbial metabolomic responses to changes in temperature and salinity along the western Antarctic Peninsula.

Dawson H, Connors E, Erazo N, Sacks J, Mierzejewski V, Rundell S ISME J. 2023; 17(11):2035-2046.

PMID: 37709939 PMC: 10579395. DOI: 10.1038/s41396-023-01475-0.


Common fear molecules induce defensive responses in marine prey across trophic levels.

Roney S, Cepeda M, Belgrad B, Moore S, Smee D, Kubanek J Oecologia. 2023; 202(4):655-667.

PMID: 37615742 DOI: 10.1007/s00442-023-05438-2.


References
1.
Blunden G, Morse P, Mathe I, Hohmann J, Critchleye A, Morrell S . Betaine yields from marine algal species utilized in the preparation of seaweed extracts used in agriculture. Nat Prod Commun. 2010; 5(4):581-5. View

2.
GASTEIGER E, HAAKE P, GERGEN J . An investigation of the distribution and function of homarine (N-methyl picolinic acid). Ann N Y Acad Sci. 1960; 90:622-36. DOI: 10.1111/j.1749-6632.1960.tb26410.x. View

3.
Garza-Sanchez F, Chapman D, Cooper J . NITZSCHIA OVALIS (BACILLARIOPHYCEAE) MONO LAKE STRAIN ACCUMULATES 1,4/2,5 CYCLOHEXANETETROL IN RESPONSE TO INCREASED SALINITY(1). J Phycol. 2016; 45(2):395-403. DOI: 10.1111/j.1529-8817.2009.00667.x. View

4.
Blunden G, Guiry M, Druehl L, Kogame K, Kawai H . Trigonelline and other betaines in species of Laminariales. Nat Prod Commun. 2012; 7(7):863-5. View

5.
Spielmeyer A, Pohnert G . Influence of temperature and elevated carbon dioxide on the production of dimethylsulfoniopropionate and glycine betaine by marine phytoplankton. Mar Environ Res. 2011; 73:62-9. DOI: 10.1016/j.marenvres.2011.11.002. View