» Articles » PMID: 23755066

EQTL Epistasis - Challenges and Computational Approaches

Overview
Journal Front Genet
Date 2013 Jun 12
PMID 23755066
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The determination of expression quantitative trait loci (eQTL) epistasis - a form of functional interaction between genetic loci that affect gene expression - is an important step toward the thorough understanding of gene regulation. Since gene expression has emerged as an "intermediate" molecular phenotype eQTL epistasis might help to explain the relationship between genotype and higher level organismal phenotypes such as diseases. A characteristic feature of eQTL analysis is the big number of tests required to identify associations between gene expression and genetic loci variability. This problem is aggravated, when epistatic effects between eQTLs are analyzed. In this review, we discuss recent algorithmic approaches for the detection of eQTL epistasis and highlight lessons that can be learned from current methods.

Citing Articles

Learning epistatic polygenic phenotypes with Boolean interactions.

Behr M, Kumbier K, Cordova-Palomera A, Aguirre M, Ronen O, Ye C PLoS One. 2024; 19(4):e0298906.

PMID: 38625909 PMC: 11020961. DOI: 10.1371/journal.pone.0298906.


Signatures of Co-evolution and Co-regulation in the CYP3A and CYP4F Genes in Humans.

Richard-St-Hilaire A, Gamache I, Pelletier J, Grenier J, Poujol R, Hussin J Genome Biol Evol. 2024; 16(1).

PMID: 38207129 PMC: 10805436. DOI: 10.1093/gbe/evad236.


Roles of interacting stress-related genes in lifespan regulation: insights for translating experimental findings to humans.

Yashin A, Wu D, Arbeev K, Yashkin A, Akushevich I, Bagley O J Transl Genet Genom. 2021; 5(4):357-379.

PMID: 34825130 PMC: 8612394.


Human Stem Cell Resources Are an Inroad to Neandertal DNA Functions.

Dannemann M, He Z, Heide C, Vernot B, Sidow L, Kanton S Stem Cell Reports. 2020; 15(1):214-225.

PMID: 32559457 PMC: 7363959. DOI: 10.1016/j.stemcr.2020.05.018.


A parallelized strategy for epistasis analysis based on Empirical Bayesian Elastic Net models.

Wen J, Ford C, Janies D, Shi X Bioinformatics. 2020; 36(12):3803-3810.

PMID: 32227194 PMC: 7320619. DOI: 10.1093/bioinformatics/btaa216.


References
1.
Kim Y, Wuchty S, Przytycka T . Identifying causal genes and dysregulated pathways in complex diseases. PLoS Comput Biol. 2011; 7(3):e1001095. PMC: 3048384. DOI: 10.1371/journal.pcbi.1001095. View

2.
Barabasi A, Oltvai Z . Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004; 5(2):101-13. DOI: 10.1038/nrg1272. View

3.
Azevedo L, Carneiro J, van Asch B, Moleirinho A, Pereira F, Amorim A . Epistatic interactions modulate the evolution of mammalian mitochondrial respiratory complex components. BMC Genomics. 2009; 10:266. PMC: 2711975. DOI: 10.1186/1471-2164-10-266. View

4.
Piepho H, Gauch Jr H . Marker pair selection for mapping quantitative trait loci. Genetics. 2001; 157(1):433-44. PMC: 1461460. DOI: 10.1093/genetics/157.1.433. View

5.
Kang H, Yang X, Chen R, Zhang B, Corona E, Schadt E . Integration of disease-specific single nucleotide polymorphisms, expression quantitative trait loci and coexpression networks reveal novel candidate genes for type 2 diabetes. Diabetologia. 2012; 55(8):2205-13. PMC: 3390705. DOI: 10.1007/s00125-012-2568-3. View