» Articles » PMID: 23746846

Visualizing GroEL/ES in the Act of Encapsulating a Folding Protein

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2013 Jun 11
PMID 23746846
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

The GroEL/ES chaperonin system is required for the assisted folding of many proteins. How these substrate proteins are encapsulated within the GroEL-GroES cavity is poorly understood. Using symmetry-free, single-particle cryo-electron microscopy, we have characterized a chemically modified mutant of GroEL (EL43Py) that is trapped at a normally transient stage of substrate protein encapsulation. We show that the symmetric pattern of the GroEL subunits is broken as the GroEL cis-ring apical domains reorient to accommodate the simultaneous binding of GroES and an incompletely folded substrate protein (RuBisCO). The collapsed RuBisCO folding intermediate binds to the lower segment of two apical domains, as well as to the normally unstructured GroEL C-terminal tails. A comparative structural analysis suggests that the allosteric transitions leading to substrate protein release and folding involve concerted shifts of GroES and the GroEL apical domains and C-terminal tails.

Citing Articles

Exploring Novel Antibiotics by Targeting the GroEL/GroES Chaperonin System.

Wang Y, Tong Z, Han J, Li C, Chen X ACS Pharmacol Transl Sci. 2025; 8(1):10-20.

PMID: 39816798 PMC: 11729427. DOI: 10.1021/acsptsci.4c00397.


Visualizing chaperonin function in situ by cryo-electron tomography.

Wagner J, Carvajal A, Bracher A, Beck F, Wan W, Bohn S Nature. 2024; 633(8029):459-464.

PMID: 39169181 PMC: 11390479. DOI: 10.1038/s41586-024-07843-w.


Asymmetric apical domain states of mitochondrial Hsp60 coordinate substrate engagement and chaperonin assembly.

Braxton J, Shao H, Tse E, Gestwicki J, Southworth D Nat Struct Mol Biol. 2024; 31(12):1848-1858.

PMID: 38951622 PMC: 11638070. DOI: 10.1038/s41594-024-01352-0.


Structural basis of substrate progression through the bacterial chaperonin cycle.

Gardner S, Darrow M, Lukoyanova N, Thalassinos K, Saibil H Proc Natl Acad Sci U S A. 2023; 120(50):e2308933120.

PMID: 38064510 PMC: 10723157. DOI: 10.1073/pnas.2308933120.


Visualizing the chaperone-mediated folding trajectory of the G protein β5 β-propeller.

Wang S, Sass M, Kwon Y, Ludlam W, Smith T, Carter E Mol Cell. 2023; 83(21):3852-3868.e6.

PMID: 37852256 PMC: 10841713. DOI: 10.1016/j.molcel.2023.09.032.


References
1.
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E . UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12. DOI: 10.1002/jcc.20084. View

2.
Clare D, Bakkes P, Van Heerikhuizen H, Van Der Vies S, Saibil H . Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature. 2009; 457(7225):107-10. PMC: 2728927. DOI: 10.1038/nature07479. View

3.
Rye H, Roseman A, Chen S, Furtak K, Fenton W, Saibil H . GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell. 1999; 97(3):325-38. DOI: 10.1016/s0092-8674(00)80742-4. View

4.
Cliff M, Limpkin C, Cameron A, Burston S, Clarke A . Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE. J Biol Chem. 2006; 281(30):21266-21275. DOI: 10.1074/jbc.M601605200. View

5.
Mayhew M, Da Silva A, Martin J, Erdjument-Bromage H, Tempst P, Hartl F . Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature. 1996; 379(6564):420-6. DOI: 10.1038/379420a0. View