Bayani A, Nazarimehr F, Jafari S, Kovalenko K, Contreras-Aso G, Alfaro-Bittner K
Nat Commun. 2024; 15(1):4955.
PMID: 38858358
PMC: 11165003.
DOI: 10.1038/s41467-024-48203-6.
Spencer C, Tripp E, Fu F, Pauls S
Front Netw Physiol. 2023; 1:716883.
PMID: 36925572
PMC: 10013059.
DOI: 10.3389/fnetp.2021.716883.
Tripp E, Fu F, Pauls S
Proc Biol Sci. 2022; 289(1986):20220999.
PMID: 36350204
PMC: 9653234.
DOI: 10.1098/rspb.2022.0999.
Wang H, Moore J, Small M, Wang J, Yang H, Gu C
Appl Math Comput. 2022; 421:126911.
PMID: 35068617
PMC: 8759951.
DOI: 10.1016/j.amc.2021.126911.
Biswas D, Gupta S
Sci Rep. 2022; 12(1):433.
PMID: 35013356
PMC: 8748446.
DOI: 10.1038/s41598-021-03844-1.
Dynamic Network Characteristics of Power-electronics-based Power Systems.
Ji Y, He W, Cheng S, Kurths J, Zhan M
Sci Rep. 2020; 10(1):9946.
PMID: 32561818
PMC: 7305112.
DOI: 10.1038/s41598-020-66635-0.
Network-induced multistability through lossy coupling and exotic solitary states.
Hellmann F, Schultz P, Jaros P, Levchenko R, Kapitaniak T, Kurths J
Nat Commun. 2020; 11(1):592.
PMID: 32001705
PMC: 6992754.
DOI: 10.1038/s41467-020-14417-7.
Beta-Rhythm Oscillations and Synchronization Transition in Network Models of Izhikevich Neurons: Effect of Topology and Synaptic Type.
Khoshkhou M, Montakhab A
Front Comput Neurosci. 2018; 12:59.
PMID: 30154708
PMC: 6103382.
DOI: 10.3389/fncom.2018.00059.
A small change in neuronal network topology can induce explosive synchronization transition and activity propagation in the entire network.
Wang Z, Tian C, Dhamala M, Liu Z
Sci Rep. 2017; 7(1):561.
PMID: 28373712
PMC: 5428839.
DOI: 10.1038/s41598-017-00697-5.
Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment.
Wetzel L, Jorg D, Pollakis A, Rave W, Fettweis G, Julicher F
PLoS One. 2017; 12(2):e0171590.
PMID: 28207779
PMC: 5312960.
DOI: 10.1371/journal.pone.0171590.
Multistable states in a system of coupled phase oscillators with inertia.
Yuan D, Lin F, Wang L, Liu D, Yang J, Xiao Y
Sci Rep. 2017; 7:42178.
PMID: 28176829
PMC: 5296896.
DOI: 10.1038/srep42178.
Synchronization of phase oscillators with frequency-weighted coupling.
Xu C, Sun Y, Gao J, Qiu T, Zheng Z, Guan S
Sci Rep. 2016; 6:21926.
PMID: 26903110
PMC: 4763290.
DOI: 10.1038/srep21926.
Explosive Contagion in Networks.
Gomez-Gardenes J, Lotero L, Taraskin S, Perez-Reche F
Sci Rep. 2016; 6:19767.
PMID: 26819191
PMC: 4730159.
DOI: 10.1038/srep19767.
Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.
Lu J, Zhong J, Li L, Ho D, Cao J
Sci Rep. 2015; 5:13437.
PMID: 26315380
PMC: 4551960.
DOI: 10.1038/srep13437.
Explosive or Continuous: Incoherent state determines the route to synchronization.
Xu C, Gao J, Sun Y, Huang X, Zheng Z
Sci Rep. 2015; 5:12039.
PMID: 26160578
PMC: 4498219.
DOI: 10.1038/srep12039.
Exact solution for first-order synchronization transition in a generalized Kuramoto model.
Hu X, Boccaletti S, Huang W, Zhang X, Liu Z, Guan S
Sci Rep. 2014; 4:7262.
PMID: 25434404
PMC: 4248286.
DOI: 10.1038/srep07262.
Synchronization in output-coupled temporal Boolean networks.
Lu J, Zhong J, Tang Y, Huang T, Cao J, Kurths J
Sci Rep. 2014; 4:6292.
PMID: 25189531
PMC: 4164038.
DOI: 10.1038/srep06292.
Explosive synchronization as a process of explosive percolation in dynamical phase space.
Zhang X, Zou Y, Boccaletti S, Liu Z
Sci Rep. 2014; 4:5200.
PMID: 24903808
PMC: 4650870.
DOI: 10.1038/srep05200.
Low-dimensional behavior of Kuramoto model with inertia in complex networks.
Ji P, Peron T, Rodrigues F, Kurths J
Sci Rep. 2014; 4:4783.
PMID: 24786680
PMC: 4007097.
DOI: 10.1038/srep04783.