» Articles » PMID: 23704835

Polarized Molecular Orbital Model Chemistry 3. The PMO Method Extended to Organic Chemistry

Overview
Specialties Biochemistry
Chemistry
Date 2013 May 25
PMID 23704835
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The polarized molecular orbital (PMO) method, a neglect-of-diatomic-differential-overlap (NDDO) semiempirical molecular orbital method previously parameterized for systems composed of O and H, is here extended to carbon. We modified the formalism and optimized all the parameters in the PMO Hamiltonian by using a genetic algorithm and a database containing both electrostatic and energetic properties; the new parameter set is called PMO2. The quality of the resulting predictions is compared to results obtained by previous NDDO semiempirical molecular orbital methods, both including and excluding dispersion terms. We also compare the PMO2 properties to SCC-DFTB calculations. Within the class of semiempirical molecular orbital methods, the PMO2 method is found to be especially accurate for polarizabilities, atomization energies, proton transfer energies, noncovalent complexation energies, and chemical reaction barrier heights and to have good across-the-board accuracy for a range of other properties, including dipole moments, partial atomic charges, and molecular geometries.

Citing Articles

The PM6-FGC Method: Improved Corrections for Amines and Amides.

Rios-Garcia M, Fernandez B, Rodriguez-Otero J, Cabaleiro-Lago E, Vazquez S Molecules. 2022; 27(5).

PMID: 35268779 PMC: 8924896. DOI: 10.3390/molecules27051678.


Doubly Polarized QM/MM with Machine Learning Chaperone Polarizability.

Kim B, Shao Y, Pu J J Chem Theory Comput. 2021; 17(12):7682-7695.

PMID: 34723536 PMC: 9047028. DOI: 10.1021/acs.jctc.1c00567.


New Approach for Correcting Noncovalent Interactions in Semiempirical Quantum Mechanical Methods: The Importance of Multiple-Orientation Sampling.

Perez-Tabero S, Fernandez B, Cabaleiro-Lago E, Martinez-Nunez E, Vazquez S J Chem Theory Comput. 2021; 17(9):5556-5567.

PMID: 34424696 PMC: 8486165. DOI: 10.1021/acs.jctc.1c00365.


Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications.

Christensen A, Kubar T, Cui Q, Elstner M Chem Rev. 2016; 116(9):5301-37.

PMID: 27074247 PMC: 4867870. DOI: 10.1021/acs.chemrev.5b00584.


Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization.

Christensen A, Elstner M, Cui Q J Chem Phys. 2015; 143(8):084123.

PMID: 26328834 PMC: 4552706. DOI: 10.1063/1.4929335.


References
1.
Zimmerli U, Parrinello M, Koumoutsakos P . Dispersion corrections to density functionals for water aromatic interactions. J Chem Phys. 2004; 120(6):2693-9. DOI: 10.1063/1.1637034. View

2.
McNamara J, Hillier I . Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules. Phys Chem Chem Phys. 2007; 9(19):2362-70. DOI: 10.1039/b701890h. View

3.
Bickelhaupt F, Baerends E . The case for steric repulsion causing the staggered conformation of ethane. Angew Chem Int Ed Engl. 2003; 42(35):4183-8. DOI: 10.1002/anie.200350947. View

4.
rezac J, Hobza P . Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J Chem Theory Comput. 2015; 8(1):141-51. DOI: 10.1021/ct200751e. View

5.
Grimme S . Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem. 2004; 25(12):1463-73. DOI: 10.1002/jcc.20078. View