» Articles » PMID: 23660778

Modeling of PET Data in CNS Drug Discovery and Development

Overview
Publisher Springer
Specialty Pharmacology
Date 2013 May 11
PMID 23660778
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Positron emission tomography (PET) is increasingly used in drug discovery and development for evaluation of CNS drug disposition and for studies of disease biomarkers to monitor drug effects on brain pathology. The quantitative analysis of PET data is based on kinetic modeling of radioactivity concentrations in plasma and brain tissue compartments. A number of quantitative methods of analysis have been developed that allow the determination of parameters describing drug pharmacokinetics and interaction with target binding sites in the brain. The optimal method of quantification depends on the properties of the radiolabeled drug or radioligand and the binding site studied. We here review the most frequently used methods for quantification of PET data in relation to CNS drug discovery and development. The utility of PET kinetic modeling in the development of novel CNS drugs is illustrated by examples from studies of the brain kinetic properties of radiolabeled drug molecules.

Citing Articles

Antiviral treatment in schizophrenia: a randomized pilot PET study on the effects of valaciclovir on neuroinflammation.

Jonker I, Doorduin J, Knegtering H, Vant Hag E, Dierckx R, de Vries E Psychol Med. 2023; 53(15):7087-7095.

PMID: 37016791 PMC: 10719624. DOI: 10.1017/S0033291723000430.


The dilemma of polypharmacy in psychosis: is it worth combining partial and full dopamine modulation?.

Lippi M, Fanelli G, Fabbri C, De Ronchi D, Serretti A Int Clin Psychopharmacol. 2022; 37(6):263-275.

PMID: 35815937 PMC: 9521590. DOI: 10.1097/YIC.0000000000000417.


PET as a Translational Tool in Drug Development for Neuroscience Compounds.

Varrone A, Bundgaard C, Bang-Andersen B Clin Pharmacol Ther. 2022; 111(4):774-785.

PMID: 35201613 PMC: 9305164. DOI: 10.1002/cpt.2548.


Treating viruses in the brain: Perspectives from NeuroAIDS.

Nicol M, McRae M Neurosci Lett. 2021; 748:135691.

PMID: 33524474 PMC: 8483622. DOI: 10.1016/j.neulet.2021.135691.


PET technology for drug development in psychiatry.

Arakawa R, Takano A, Halldin C Neuropsychopharmacol Rep. 2020; 40(2):114-121.

PMID: 32463584 PMC: 7722687. DOI: 10.1002/npr2.12084.


References
1.
Gulyas B, Halldin C, Sandell J, Karlsson P, Sovago J, Karpati E . PET studies on the brain uptake and regional distribution of [11C]vinpocetine in human subjects. Acta Neurol Scand. 2002; 106(6):325-32. DOI: 10.1034/j.1600-0404.2002.01302.x. View

2.
Logan J, Fowler J, Volkow N, Wolf A, Dewey S, Schlyer D . Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990; 10(5):740-7. DOI: 10.1038/jcbfm.1990.127. View

3.
Karlsson P, Farde L, Halldin C, Sedvall G, Ynddal L, Sloth-Nielsen M . Oral administration of NNC 756--a placebo controlled PET study of D1-dopamine receptor occupancy and pharmacodynamics in man. Psychopharmacology (Berl). 1995; 119(1):1-8. DOI: 10.1007/BF02246046. View

4.
Friden M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M . In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos. 2007; 35(9):1711-9. DOI: 10.1124/dmd.107.015222. View

5.
Ichise M, Meyer J, Yonekura Y . An introduction to PET and SPECT neuroreceptor quantification models. J Nucl Med. 2001; 42(5):755-63. View