Xie H, Li Y, Zhao L, Chien J, Wang C
Exp Brain Res. 2025; 243(2):47.
PMID: 39825939
DOI: 10.1007/s00221-024-06995-5.
Levin S, Lowell de Solorzano S
Front Physiol. 2024; 15:1432410.
PMID: 39403564
PMC: 11471642.
DOI: 10.3389/fphys.2024.1432410.
Barnes L, Davidson M, Alais D
Atten Percept Psychophys. 2024; 87(1):245-260.
PMID: 39048846
PMC: 11845409.
DOI: 10.3758/s13414-024-02932-4.
Davidson M, Verstraten F, Alais D
Nat Commun. 2024; 15(1):2027.
PMID: 38453900
PMC: 10920920.
DOI: 10.1038/s41467-024-45780-4.
Kreter N, Fino P
J R Soc Interface. 2024; 21(211):20230577.
PMID: 38350615
PMC: 10864096.
DOI: 10.1098/rsif.2023.0577.
Continuous peripersonal tracking accuracy is limited by the speed and phase of locomotion.
Davidson M, Keys R, Szekely B, MacNeilage P, Verstraten F, Alais D
Sci Rep. 2023; 13(1):14864.
PMID: 37684285
PMC: 10491677.
DOI: 10.1038/s41598-023-40655-y.
Human locomotion over obstacles reveals real-time prediction of energy expenditure for optimized decision-making.
Daniels K, Burn J
Proc Biol Sci. 2023; 290(2000):20230200.
PMID: 37312546
PMC: 10265010.
DOI: 10.1098/rspb.2023.0200.
How Pendular Is Human Brachiation? When Form Does Not Follow Function.
Young M, Virga J, Kantounis S, Lynch S, Chernik N, Gustafson J
Animals (Basel). 2023; 13(9).
PMID: 37174475
PMC: 10177241.
DOI: 10.3390/ani13091438.
Humans plan for the near future to walk economically on uneven terrain.
Darici O, Kuo A
Proc Natl Acad Sci U S A. 2023; 120(19):e2211405120.
PMID: 37126717
PMC: 10175744.
DOI: 10.1073/pnas.2211405120.
A neural active inference model of perceptual-motor learning.
Yang Z, Diaz G, Fajen B, Bailey R, Ororbia A
Front Comput Neurosci. 2023; 17:1099593.
PMID: 36890967
PMC: 9986490.
DOI: 10.3389/fncom.2023.1099593.
When running is easier than walking: effects of experience and gait on human obstacle traversal in virtual reality.
Hofmann F, Durr V
Exp Brain Res. 2022; 240(10):2701-2714.
PMID: 36114836
PMC: 9510118.
DOI: 10.1007/s00221-022-06443-2.
Retinal optic flow during natural locomotion.
Matthis J, Muller K, Bonnen K, Hayhoe M
PLoS Comput Biol. 2022; 18(2):e1009575.
PMID: 35192614
PMC: 8896712.
DOI: 10.1371/journal.pcbi.1009575.
Humans optimally anticipate and compensate for an uneven step during walking.
Darici O, Kuo A
Elife. 2022; 11.
PMID: 35014609
PMC: 8920505.
DOI: 10.7554/eLife.65402.
Binocular vision and the control of foot placement during walking in natural terrain.
Bonnen K, Matthis J, Gibaldi A, Banks M, Levi D, Hayhoe M
Sci Rep. 2021; 11(1):20881.
PMID: 34686759
PMC: 8536664.
DOI: 10.1038/s41598-021-99846-0.
Gazing down increases standing and walking postural steadiness.
Koren Y, Mairon R, Sofer I, Parmet Y, Ben-Shahar O, Bar-Haim S
R Soc Open Sci. 2021; 8(3):201556.
PMID: 33959324
PMC: 8074885.
DOI: 10.1098/rsos.201556.
Gaze-behaviors of runners in a natural, urban running environment.
Cullen M, Schmitt D, Granatosky M, Wall C, Platt M, Larsen R
PLoS One. 2020; 15(5):e0233158.
PMID: 32428016
PMC: 7237013.
DOI: 10.1371/journal.pone.0233158.
Gaze coordination with strides during walking in the cat.
Zubair H, Chu K, Johnson J, Rivers T, Beloozerova I
J Physiol. 2019; 597(21):5195-5229.
PMID: 31460673
PMC: 9260858.
DOI: 10.1113/JP278108.
Control strategies for rapid, visually guided adjustments of the foot during continuous walking.
Barton S, Matthis J, Fajen B
Exp Brain Res. 2019; 237(7):1673-1690.
PMID: 30976822
DOI: 10.1007/s00221-019-05538-7.
Using smartphone accelerometry to assess the relationship between cognitive load and gait dynamics during outdoor walking.
Ho S, Mohtadi A, Daud K, Leonards U, Handy T
Sci Rep. 2019; 9(1):3119.
PMID: 30816292
PMC: 6395667.
DOI: 10.1038/s41598-019-39718-w.
Cognitively Demanding Object Negotiation While Walking and Texting.
Chopra P, Castelli D, Dingwell J
Sci Rep. 2018; 8(1):17880.
PMID: 30552394
PMC: 6294810.
DOI: 10.1038/s41598-018-36230-5.