» Articles » PMID: 23656622

The Genomic Landscape of Chronic Lymphocytic Leukemia: Clinical Implications

Overview
Journal BMC Med
Publisher Biomed Central
Specialty General Medicine
Date 2013 May 10
PMID 23656622
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

A precise understanding of the genomic and epigenomic features of chronic lymphocytic leukemia (CLL) may benefit the study of the disease's staging and treatment. While recent reports have shed some light on these aspects, several challenges need to be addressed before translating this research into clinical practice. Thus, even the best candidate driver genes display low mutational rates compared to other tumors. This means that a large percentage of cases do not display clear tumor-driving point mutations, or show candidate driving point mutations with no obvious biochemical relationship to the more frequently mutated genes. This genomic landscape probably reflects either an unknown underlying biochemical mechanism playing a key role in CLL or multiple biochemical pathways independently driving the development of this tumor. The elucidation of either scenario will have important consequences on the clinical management of CLL. Herein, we review the recent advances in the definition of the genomic landscape of CLL and the ongoing research to characterize the underlying biochemical events that drive this disease.

Citing Articles

MALAT1 expression is associated with aggressive behavior in indolent B-cell neoplasms.

Fernandez-Garnacho E, Nadeu F, Martin S, Mozas P, Rivero A, Delgado J Sci Rep. 2023; 13(1):16839.

PMID: 37803049 PMC: 10558466. DOI: 10.1038/s41598-023-44174-8.


Nucleosome repositioning in chronic lymphocytic leukemia.

Piroeva K, McDonald C, Xanthopoulos C, Fox C, Clarkson C, Mallm J Genome Res. 2023; 33(10):1649-1661.

PMID: 37699659 PMC: 10691546. DOI: 10.1101/gr.277298.122.


mutation-mediated sensitization to H3B-8800 splicing inhibitor in chronic lymphocytic leukemia.

Lopez-Oreja I, Gohr A, Playa-Albinyana H, Giro A, Arenas F, Higashi M Life Sci Alliance. 2023; 6(11).

PMID: 37562845 PMC: 10415613. DOI: 10.26508/lsa.202301955.


The spectrum of subclonal TP53 mutations in chronic lymphocytic leukemia: A next generation sequencing retrospective study.

De Luca G, Cerruti G, Lastraioli S, Conte R, Ibatici A, Di Felice N Hematol Oncol. 2022; 40(5):962-975.

PMID: 35961859 PMC: 10086786. DOI: 10.1002/hon.3063.


Multi-omics reveals clinically relevant proliferative drive associated with mTOR-MYC-OXPHOS activity in chronic lymphocytic leukemia.

Lu J, Cannizzaro E, Meier-Abt F, Scheinost S, Bruch P, Giles H Nat Cancer. 2021; 2(8):853-864.

PMID: 34423310 PMC: 7611543. DOI: 10.1038/s43018-021-00216-6.


References
1.
Rozovski U, Keating M, Estrov Z . The significance of spliceosome mutations in chronic lymphocytic leukemia. Leuk Lymphoma. 2012; 54(7):1364-6. PMC: 4176818. DOI: 10.3109/10428194.2012.742528. View

2.
Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F . Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood. 2011; 119(2):521-9. PMC: 3257017. DOI: 10.1182/blood-2011-09-379966. View

3.
Visconte V, Makishima H, Maciejewski J, Tiu R . Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia. 2012; 26(12):2447-54. PMC: 3645466. DOI: 10.1038/leu.2012.130. View

4.
Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S . Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood. 2012; 119(12):2854-62. DOI: 10.1182/blood-2011-12-395673. View

5.
Meyerson M, Gabriel S, Getz G . Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010; 11(10):685-96. DOI: 10.1038/nrg2841. View