» Articles » PMID: 23650074

Variable Selection in Monotone Single-index Models Via the Adaptive LASSO

Overview
Journal Stat Med
Publisher Wiley
Specialty Public Health
Date 2013 May 8
PMID 23650074
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

We consider the problem of variable selection for monotone single-index models. A single-index model assumes that the expectation of the outcome is an unknown function of a linear combination of covariates. Assuming monotonicity of the unknown function is often reasonable and allows for more straightforward inference. We present an adaptive LASSO penalized least squares approach to estimating the index parameter and the unknown function in these models for continuous outcome. Monotone function estimates are achieved using the pooled adjacent violators algorithm, followed by kernel regression. In the iterative estimation process, a linear approximation to the unknown function is used, therefore reducing the situation to that of linear regression and allowing for the use of standard LASSO algorithms, such as coordinate descent. Results of a simulation study indicate that the proposed methods perform well under a variety of circumstances and that an assumption of monotonicity, when appropriate, noticeably improves performance. The proposed methods are applied to data from a randomized clinical trial for the treatment of a critical illness in the intensive care unit.

Citing Articles

A monotone single index model for missing-at-random longitudinal proportion data.

Acharyya S, Pati D, Sun S, Bandyopadhyay D J Appl Stat. 2024; 51(6):1023-1040.

PMID: 38628451 PMC: 11018042. DOI: 10.1080/02664763.2023.2173156.


Maximum Likelihood Estimation for Shape-restricted Single-index Hazard Models.

Qin J, Sun Y, Yuan A, Huang C J Data Sci. 2024; 21(4):681-695.

PMID: 38623143 PMC: 11017303. DOI: 10.6339/22-jds1061.


Highly robust causal semiparametric U-statistic with applications in biomedical studies.

Yin A, Yuan A, Tan M Int J Biostat. 2022; 20(1):69-91.

PMID: 36433631 PMC: 10225018. DOI: 10.1515/ijb-2022-0047.


Sparse Single Index Models for Multivariate Responses.

Feng Y, Xiao L, Chi E J Comput Graph Stat. 2021; 30(1):115-124.

PMID: 34025100 PMC: 8133682. DOI: 10.1080/10618600.2020.1779080.


A family of partial-linear single-index models for analyzing complex environmental exposures with continuous, categorical, time-to-event, and longitudinal health outcomes.

Wang Y, Wu Y, Jacobson M, Lee M, Jin P, Trasande L Environ Health. 2020; 19(1):96.

PMID: 32912175 PMC: 7488560. DOI: 10.1186/s12940-020-00644-4.


References
1.
Katz S, Akpom C . 12. Index of ADL. Med Care. 1976; 14(5 Suppl):116-8. DOI: 10.1097/00005650-197605001-00018. View

2.
Zou H, Zhang H . ON THE ADAPTIVE ELASTIC-NET WITH A DIVERGING NUMBER OF PARAMETERS. Ann Stat. 2010; 37(4):1733-1751. PMC: 2864037. DOI: 10.1214/08-AOS625. View

3.
Liang H, Liu X, Li R, Tsai C . ESTIMATION AND TESTING FOR PARTIALLY LINEAR SINGLE-INDEX MODELS. Ann Stat. 2011; 38(6):3811-3836. PMC: 3102543. DOI: 10.1214/10-AOS835. View

4.
Foster J, Taylor J, Ruberg S . Subgroup identification from randomized clinical trial data. Stat Med. 2011; 30(24):2867-80. PMC: 3880775. DOI: 10.1002/sim.4322. View