» Articles » PMID: 23644529

AMPK: a Contextual Oncogene or Tumor Suppressor?

Overview
Journal Cancer Res
Specialty Oncology
Date 2013 May 7
PMID 23644529
Citations 150
Authors
Affiliations
Soon will be listed here.
Abstract

The AMP-activated protein kinase (AMPK) functions to monitor and maintain energy homeostasis at the cellular and organism level. AMPK was perceived historically primarily as a component of the LKB1/STK11 tumor suppressor (LKB1 mutations cause the Peutz-Jegher cancer predisposition syndrome) cascade upstream of the TSC1/2/mTOR pathway and thus likely to be a tumor suppressor. However, AMPK has recently been shown to promote cancer cell survival in the face of extrinsic and intrinsic stressors including bioenergetic, growth factor, and oncogene stress compatible with studies showing that AMPK is required for oncogenic transformation. Thus, whether AMPK acts as a bona fide tumor suppressor or a contextual oncogene and, of particular importance, whether AMPK should be targeted for activation or inhibition during cancer therapy, is controversial and requires clarification. We aim to initiate discussions of these critical questions by reviewing the role of AMPK with an emphasis on cancer cell adaptation to microenvironment stress and therapeutic intervention.

Citing Articles

Energy Metabolism Profiling of Human Colorectal Tumours.

Reinsalu L, Miller S, Auditano G, Puurand M, Moreno-Sanchez R, Saavedra E J Cell Mol Med. 2025; 29(5):e70462.

PMID: 40045444 PMC: 11882391. DOI: 10.1111/jcmm.70462.


Ebastine-mediated destabilization of E3 ligase MKRN1 protects against metabolic dysfunction-associated steatohepatitis.

Kim S, Han H, Rho H, Kang S, Mukherjee S, Kim J Cell Mol Life Sci. 2025; 82(1):66.

PMID: 39888429 PMC: 11785899. DOI: 10.1007/s00018-024-05535-2.


Small Molecule Modulators of AMP-Activated Protein Kinase (AMPK) Activity and Their Potential in Cancer Therapy.

Strang J, Astridge D, Nguyen V, Reigan P J Med Chem. 2025; 68(3):2238-2254.

PMID: 39879193 PMC: 11831681. DOI: 10.1021/acs.jmedchem.4c02354.


The role of acetylation and deacetylation in cancer metabolism.

Wang C, Ma X Clin Transl Med. 2025; 15(1):e70145.

PMID: 39778006 PMC: 11706801. DOI: 10.1002/ctm2.70145.


Non-metabolic enzyme function of pyruvate kinase M2 in breast cancer.

Jemal M, Getinet M, Amare G, Tegegne B, Baylie T, Mengistu E Front Oncol. 2024; 14:1450325.

PMID: 39411137 PMC: 11473492. DOI: 10.3389/fonc.2024.1450325.


References
1.
Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L . Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature. 2010; 468(7324):701-4. PMC: 3058342. DOI: 10.1038/nature09595. View

2.
Nagel S, Leich E, Quentmeier H, Meyer C, Kaufmann M, Zaborski M . Amplification at 11q23 targets protein kinase SIK2 in diffuse large B-cell lymphoma. Leuk Lymphoma. 2010; 51(5):881-91. DOI: 10.3109/10428191003699878. View

3.
Kemphues K, Priess J, Morton D, Cheng N . Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell. 1988; 52(3):311-20. DOI: 10.1016/s0092-8674(88)80024-2. View

4.
Ollila S, Makela T . The tumor suppressor kinase LKB1: lessons from mouse models. J Mol Cell Biol. 2011; 3(6):330-40. DOI: 10.1093/jmcb/mjr016. View

5.
Namiki T, Coelho S, Hearing V . NUAK2: an emerging acral melanoma oncogene. Oncotarget. 2011; 2(9):695-704. PMC: 3248218. DOI: 10.18632/oncotarget.325. View