» Articles » PMID: 23641056

Reversibility of Structural and Functional Damage in a Model of Advanced Diabetic Nephropathy

Overview
Specialty Nephrology
Date 2013 May 4
PMID 23641056
Citations 88
Authors
Affiliations
Soon will be listed here.
Abstract

The reversibility of diabetic nephropathy remains controversial. Here, we tested whether replacing leptin could reverse the advanced diabetic nephropathy modeled by the leptin-deficient BTBR ob/ob mouse. Leptin replacement, but not inhibition of the renin-angiotensin-aldosterone system (RAAS), resulted in near-complete reversal of both structural (mesangial matrix expansion, mesangiolysis, basement membrane thickening, podocyte loss) and functional (proteinuria, accumulation of reactive oxygen species) measures of advanced diabetic nephropathy. Immunohistochemical labeling with the podocyte markers Wilms tumor 1 and p57 identified parietal epithelial cells as a possible source of regenerating podocytes. Thus, the leptin-deficient BTBR ob/ob mouse provides a model of advanced but reversible diabetic nephropathy for further study. These results also suggest that restoration of lost podocytes is possible but is not induced by RAAS inhibition, possibly explaining the limited efficacy of RAAS inhibitors in promoting repair of diabetic nephropathy.

Citing Articles

Mannan-Binding Lectin Is Associated with Inflammation and Kidney Damage in a Mouse Model of Type 2 Diabetes.

Dorflinger G, Holt C, Thiel S, Bech J, Ostergaard J, Bjerre M Int J Mol Sci. 2024; 25(13).

PMID: 39000309 PMC: 11241296. DOI: 10.3390/ijms25137204.


Whole transcriptome mapping reveals the lncRNA regulatory network of TFP5 treatment in diabetic nephropathy.

Luo H, Yang L, Zhang G, Bao X, Ma D, Li B Genes Genomics. 2024; 46(5):621-635.

PMID: 38536617 DOI: 10.1007/s13258-024-01504-y.


Podocytes from hypertensive and obese mice acquire an inflammatory, senescent, and aged phenotype.

McKinzie S, Kaverina N, Schweickart R, Chaney C, Eng D, Pereira B Am J Physiol Renal Physiol. 2024; 326(4):F644-F660.

PMID: 38420674 PMC: 11208020. DOI: 10.1152/ajprenal.00417.2023.


Genetic Analysis of Obesity-Induced Diabetic Nephropathy in BTBR Mice.

Keller M, OConnor C, Bitzer M, Schueler K, Stapleton D, Emfinger C Diabetes. 2023; 73(2):312-317.

PMID: 37935024 PMC: 10796299. DOI: 10.2337/db23-0444.


The crosstalk between glomerular endothelial cells and podocytes controls their responses to metabolic stimuli in diabetic nephropathy.

Albrecht M, Sticht C, Wagner T, Hettler S, de la Torre C, Qiu J Sci Rep. 2023; 13(1):17985.

PMID: 37863933 PMC: 10589299. DOI: 10.1038/s41598-023-45139-7.


References
1.
Quaggin S, Coffman T . Toward a mouse model of diabetic nephropathy: is endothelial nitric oxide synthase the missing link?. J Am Soc Nephrol. 2007; 18(2):364-6. DOI: 10.1681/ASN.2006121396. View

2.
Feng M, Whitesall S, Zhang Y, Beibel M, DAlecy L, DiPetrillo K . Validation of volume-pressure recording tail-cuff blood pressure measurements. Am J Hypertens. 2008; 21(12):1288-91. DOI: 10.1038/ajh.2008.301. View

3.
Pagtalunan M, Miller P, Nelson R, Myers B, Rennke H, COPLON N . Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997; 99(2):342-8. PMC: 507802. DOI: 10.1172/JCI119163. View

4.
Guo S, Kowalewska J, Wietecha T, Iyoda M, Wang L, Yi K . Renin-angiotensin system blockade is renoprotective in immune complex-mediated glomerulonephritis. J Am Soc Nephrol. 2008; 19(6):1168-76. PMC: 2396930. DOI: 10.1681/ASN.2007050607. View

5.
Najafian B, Alpers C, Fogo A . Pathology of human diabetic nephropathy. Contrib Nephrol. 2011; 170:36-47. DOI: 10.1159/000324942. View