» Articles » PMID: 23622248

Mapping the Human MiRNA Interactome by CLASH Reveals Frequent Noncanonical Binding

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2013 Apr 30
PMID 23622248
Citations 711
Authors
Affiliations
Soon will be listed here.
Abstract

MicroRNAs (miRNAs) play key roles in gene regulation, but reliable bioinformatic or experimental identification of their targets remains difficult. To provide an unbiased view of human miRNA targets, we developed a technique for ligation and sequencing of miRNA-target RNA duplexes associated with human AGO1. Here, we report data sets of more than 18,000 high-confidence miRNA-mRNA interactions. The binding of most miRNAs includes the 5' seed region, but around 60% of seed interactions are noncanonical, containing bulged or mismatched nucleotides. Moreover, seed interactions are generally accompanied by specific, nonseed base pairing. 18% of miRNA-mRNA interactions involve the miRNA 3' end, with little evidence for 5' contacts, and some of these were functionally validated. Analyses of miRNA:mRNA base pairing showed that miRNA species systematically differ in their target RNA interactions, and strongly overrepresented motifs were found in the interaction sites of several miRNAs. We speculate that these affect the response of RISC to miRNA-target binding.

Citing Articles

Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines.

Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B Signal Transduct Target Ther. 2025; 10(1):73.

PMID: 40059188 PMC: 11891339. DOI: 10.1038/s41392-024-02112-8.


Analysis of crosslinking sites suggests PIWI Argonaute exhibits flexible conformations for target recognition.

Wu W, Lee D, Chung C, Lu S, Brown J, Zhang D bioRxiv. 2025; .

PMID: 39990337 PMC: 11844481. DOI: 10.1101/2025.02.14.638322.


The human genome encodes a multitude of novel miRNAs.

Gao F, Wang F, Chen Y, Deng B, Yang F, Cao H Nucleic Acids Res. 2025; 53(4).

PMID: 39964476 PMC: 11833695. DOI: 10.1093/nar/gkaf070.


Investigating the miRNA-mRNA interactome of human trabecular meshwork cells treated with TGF-β1 provides insights into the pathogenesis of pseudoexfoliation glaucoma.

Roodnat A, Doyle C, Callaghan B, Lester K, Henry M, Sheridan C PLoS One. 2025; 20(1):e0318125.

PMID: 39883689 PMC: 11781692. DOI: 10.1371/journal.pone.0318125.


RNA structure: implications in viral infections and neurodegenerative diseases.

Lu S, Tang Y, Yin S, Sun L Adv Biotechnol (Singap). 2025; 2(1):3.

PMID: 39883271 PMC: 11740852. DOI: 10.1007/s44307-024-00010-2.


References
1.
Krek A, Grun D, Poy M, Wolf R, Rosenberg L, Epstein E . Combinatorial microRNA target predictions. Nat Genet. 2005; 37(5):495-500. DOI: 10.1038/ng1536. View

2.
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R . Fast and effective prediction of microRNA/target duplexes. RNA. 2004; 10(10):1507-17. PMC: 1370637. DOI: 10.1261/rna.5248604. View

3.
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T . Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004; 15(2):185-97. DOI: 10.1016/j.molcel.2004.07.007. View

4.
Zhang C, Darnell R . Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol. 2011; 29(7):607-14. PMC: 3400429. DOI: 10.1038/nbt.1873. View

5.
Dennis Jr G, Sherman B, Hosack D, Yang J, Gao W, Lane H . DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003; 4(5):P3. View