» Articles » PMID: 23614528

Synthesis and in Vitro and in Vivo Characterization of Highly β1-selective β-adrenoceptor Partial Agonists

Overview
Journal J Med Chem
Specialty Chemistry
Date 2013 Apr 26
PMID 23614528
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

β-Adrenoceptor antagonists boast a 50-year use for symptomatic control in numerous cardiovascular diseases. One might expect highly selective antagonists are available for the human β-adrenoceptor subtype involved in these diseases, yet few truly β1-selective molecules exist. To address this clinical need, we re-evaluated LK 204-545 (1), (1) a selective β1-adrenoceptor antagonist, and discovered it possessed significant partial agonism. Removal of 1's aromatic nitrile afforded 19, a ligand with similar β1-adrenoceptor selectivity and partial agonism (log KD of -7.75 and -5.15 as an antagonist of functional β1- and β2-mediated responses, respectively, and 34% of the maximal response of isoprenaline (β1)). In vitro β-adrenoceptor selectivity and partial agonism of 19 were mirrored in vivo. We designed analogues of 19 to improve affinity, selectivity, and partial agonism. Although partial agonism could not be fully attenuated, SAR suggests that an extended alkoxyalkoxy side chain, alongside substituents at the meta- or para-positions of the phenylurea, increases ligand affinity and β1-selectivity.

Citing Articles

Design, Synthesis, Computational Studies, and Anti-Proliferative Evaluation of Novel Ethacrynic Acid Derivatives Containing Nitrogen Heterocycle, Urea, and Thiourea Moieties as Anticancer Agents.

El Abbouchi A, Mkhayar K, Elkhattabi S, El Brahmi N, Hiebel M, Bignon J Molecules. 2024; 29(7).

PMID: 38611717 PMC: 11013014. DOI: 10.3390/molecules29071437.


Asthma and COPD: A Focus on β-Agonists - Past, Present and Future.

Baker J, Shaw D Handb Exp Pharmacol. 2023; 285:369-451.

PMID: 37709918 DOI: 10.1007/164_2023_679.


A Photoswitchable Ligand Targeting the β -Adrenoceptor Enables Light-Control of the Cardiac Rhythm.

Duran-Corbera A, Faria M, Ma Y, Prats E, Dias A, Catena J Angew Chem Int Ed Engl. 2022; 61(30):e202203449.

PMID: 35608051 PMC: 9401038. DOI: 10.1002/anie.202203449.


Beta-agonist drugs modulate the proliferation and differentiation of skeletal muscle cells .

Flavie Ouali B, Wang H Biochem Biophys Rep. 2021; 26:101019.

PMID: 34041371 PMC: 8144337. DOI: 10.1016/j.bbrep.2021.101019.


The Curtius Rearrangement: Applications in Modern Drug Discovery and Medicinal Chemistry.

Ghosh A, Brindisi M, Sarkar A ChemMedChem. 2018; 13(22):2351-2373.

PMID: 30187672 PMC: 6604631. DOI: 10.1002/cmdc.201800518.


References
1.
Kaumann A, Molenaar P . The low-affinity site of the beta1-adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol Ther. 2008; 118(3):303-36. DOI: 10.1016/j.pharmthera.2008.03.009. View

2.
Hoffmann C, Leitz M, Oberdorf-Maass S, Lohse M, Klotz K . Comparative pharmacology of human beta-adrenergic receptor subtypes--characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol. 2004; 369(2):151-9. DOI: 10.1007/s00210-003-0860-y. View

3.
Hoefle M, Hastings S, Meyer R, Corey R, Holmes A, STRATTON C . Cardioselective beta-adrenergic blocking agents. 1. 1-((3,4-Dimethoxyphenethyl)amino)-3-aryloxy-2-propanols. J Med Chem. 1975; 18(2):148-52. DOI: 10.1021/jm00236a007. View

4.
Large M, Smith L . beta-Adrenergic blocking agents. 23. 1-[Substituted-amido)phenoxy]-3-[[(substituted-amido)alkyl]amino] propan-2-ols. J Med Chem. 1983; 26(3):352-7. DOI: 10.1021/jm00357a008. View

5.
Baker J . Evidence for a secondary state of the human beta3-adrenoceptor. Mol Pharmacol. 2005; 68(6):1645-55. DOI: 10.1124/mol.105.015461. View