» Articles » PMID: 23613772

N-terminal Acetylation by NatC is Not a General Determinant for Substrate Subcellular Localization in Saccharomyces Cerevisiae

Overview
Journal PLoS One
Date 2013 Apr 25
PMID 23613772
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

N-terminal acetylation has been suggested to play a role in the subcellular targeting of proteins, in particular those acetylated by the N-terminal acetyltransferase complex NatC. Based on previous positional proteomics data revealing N-terminal acetylation status and the predicted NAT substrate classes, we selected 13 suitable NatC substrates for subcellular localization studies in Saccharomyces cerevisiae. Fluorescence microscopy analysis of GFP-tagged candidates in the presence or absence of the NatC catalytic subunit Naa30 (Mak3) revealed unaltered localization patterns for all 13 candidates, thus arguing against a general role for the N-terminal acetyl group as a localization determinant. Furthermore, all organelle-localized substrates indicated undisrupted structures, thus suggesting that absence of NatC acetylation does not have a vast effect on organelle morphology in yeast.

Citing Articles

Functional mapping of N-terminal residues in the yeast proteome uncovers novel determinants for mitochondrial protein import.

Nashed S, El Barbry H, Benchouaia M, Dijoux-Marechal A, Delaveau T, Ruiz-Gutierrez N PLoS Genet. 2023; 19(8):e1010848.

PMID: 37585488 PMC: 10482271. DOI: 10.1371/journal.pgen.1010848.


Significance of NatB-mediated N-terminal acetylation of auxin biosynthetic enzymes in maintaining auxin homeostasis in Arabidopsis thaliana.

Liu H, Pu Z, Di D, Zou Y, Guo Y, Wang J Commun Biol. 2022; 5(1):1410.

PMID: 36550195 PMC: 9780221. DOI: 10.1038/s42003-022-04313-9.


From Nucleus to Membrane: A Subcellular Map of the N-Acetylation Machinery in Plants.

Pozoga M, Armbruster L, Wirtz M Int J Mol Sci. 2022; 23(22).

PMID: 36430970 PMC: 9692967. DOI: 10.3390/ijms232214492.


Stablization of ACOs by NatB mediated N-terminal acetylation is required for ethylene homeostasis.

Liu H, Zou Y, Li X, Wu L, Guo G BMC Plant Biol. 2021; 21(1):320.

PMID: 34217224 PMC: 8254318. DOI: 10.1186/s12870-021-03090-7.


Human NAA30 can rescue yeast mak3∆ mutant growth phenotypes.

Drazic A, Varland S Biosci Rep. 2021; 41(3).

PMID: 33600573 PMC: 7938456. DOI: 10.1042/BSR20202828.


References
1.
Dascher C, Ossig R, Gallwitz D, Schmitt H . Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily. Mol Cell Biol. 1991; 11(2):872-85. PMC: 359739. DOI: 10.1128/mcb.11.2.872-885.1991. View

2.
Setty S, Strochlic T, Tong A, Boone C, Burd C . Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p. Nat Cell Biol. 2004; 6(5):414-9. DOI: 10.1038/ncb1121. View

3.
Polevoda B, Sherman F . NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p. J Biol Chem. 2001; 276(23):20154-9. DOI: 10.1074/jbc.M011440200. View

4.
Starheim K, Gromyko D, Evjenth R, Ryningen A, Varhaug J, Lillehaug J . Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization. Mol Cell Biol. 2009; 29(13):3569-81. PMC: 2698767. DOI: 10.1128/MCB.01909-08. View

5.
Behnia R, Barr F, Flanagan J, Barlowe C, Munro S . The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic. J Cell Biol. 2007; 176(3):255-61. PMC: 2063951. DOI: 10.1083/jcb.200607151. View