» Articles » PMID: 23613684

SiMacro: A Fast and Easy Data Processing Tool for Cell-Based Genomewide SiRNA Screens

Overview
Journal Genomics Inform
Publisher Biomed Central
Specialty Biology
Date 2013 Apr 25
PMID 23613684
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA) screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute.

Citing Articles

XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer.

Kim J, McMillan E, Kim H, Venkateswaran N, Makkar G, Rodriguez-Canales J Nature. 2016; 538(7623):114-117.

PMID: 27680702 PMC: 5161658. DOI: 10.1038/nature19771.


Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer.

Young J, Peyton M, Kim H, McMillan E, Minna J, White M Bioinformatics. 2016; 32(9):1373-9.

PMID: 26755624 PMC: 4848405. DOI: 10.1093/bioinformatics/btw010.


A genome-scale screen reveals context-dependent ovarian cancer sensitivity to miRNA overexpression.

Shields B, Pecot C, Gao H, McMillan E, Potts M, Nagel C Mol Syst Biol. 2015; 11(12):842.

PMID: 26655797 PMC: 4704493. DOI: 10.15252/msb.20156308.


Cancer Cell Line Panels Empower Genomics-Based Discovery of Precision Cancer Medicine.

Kim H, Sung Y, Paik S Yonsei Med J. 2015; 56(5):1186-98.

PMID: 26256959 PMC: 4541646. DOI: 10.3349/ymj.2015.56.5.1186.


Computational detection and suppression of sequence-specific off-target phenotypes from whole genome RNAi screens.

Zhong R, Kim J, Kim H, Kim M, Lum L, Levine B Nucleic Acids Res. 2014; 42(13):8214-22.

PMID: 24972830 PMC: 4117740. DOI: 10.1093/nar/gku306.

References
1.
Gazdar A, Girard L, Lockwood W, Lam W, Minna J . Lung cancer cell lines as tools for biomedical discovery and research. J Natl Cancer Inst. 2010; 102(17):1310-21. PMC: 2935474. DOI: 10.1093/jnci/djq279. View

2.
Pelz O, Gilsdorf M, Boutros M . web cellHTS2: a web-application for the analysis of high-throughput screening data. BMC Bioinformatics. 2010; 11:185. PMC: 3098057. DOI: 10.1186/1471-2105-11-185. View

3.
Whitehurst A, Bodemann B, Cardenas J, Ferguson D, Girard L, Peyton M . Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature. 2007; 446(7137):815-9. DOI: 10.1038/nature05697. View

4.
Boutros M, Bras L, Huber W . Analysis of cell-based RNAi screens. Genome Biol. 2006; 7(7):R66. PMC: 1779553. DOI: 10.1186/gb-2006-7-7-R66. View

5.
Sharma S, Haber D, Settleman J . Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010; 10(4):241-53. DOI: 10.1038/nrc2820. View