» Articles » PMID: 23598617

Exercise Training Effects on Skeletal Muscle Plasticity and IGF-1 Receptors in Frail Elders

Overview
Journal Age (Dordr)
Publisher Springer
Specialty Geriatrics
Date 2013 Apr 20
PMID 23598617
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Age-related sarcopenia inhibits mobility, increasing the risk for developing many diseases, including diabetes, arthritis, osteoporosis, and heart disease. Tissue plasticity, or the ability to regenerate following stress, has been a subject of question in aging humans. We assessed the impact of 10-weeks of resistance training on markers of skeletal muscle plasticity and insulin growth factor-1 (IGF-1) receptor density in a sub sample of subjects who, in an earlier study, demonstrated enhanced immunohistochemical labeling of IGF following resistance training. Muscle biopsies from the vastus lateralis of five elderly men and women were taken prior to and following 10 weeks of resistance training (N = 3) or a control period (N = 2). Immunogold labeling and quantitative electron microscopy techniques were used to analyze markers of IGF-1 receptor density and tissue plasticity. The experimental subjects showed a 161 ± 93.7% increase in Z band damage following resistance training. Myofibrillar central nuclei increased 296 ± 120% (P = 0. 029) in the experimental subjects. Changes in the percent of damaged Z bands were associated with alterations in the presence of central nuclei (r = 0.668; P = 0.0347). Post hoc analysis revealed that the relative pre/post percent changes in myofibrillar Z band damage and central nuclei were not statistically different between the control and exercise groups. Exercise training increased myofibrillar IGF-1 receptor densities in the exercise subjects (P = 0.008), with a non-significant increase in the control group. Labeling patterns suggested enhanced receptor density around the Z bands, sarcolemma, and mitochondrial and nuclear membranes. Findings from this study suggest that the age-related downregulation of the skeletal muscle IGF-1 system may be reversed to some extent with progressive resistance training. Furthermore, skeletal muscle tissue plasticity in the frail elderly is maintained at least to some extent as exemplified by the enhancement of IGF-1 receptor density and markers of tissue regeneration.

Citing Articles

The signaling landscape of insulin-like growth factor 1.

Khan M, Zugaza J, Torres Aleman I J Biol Chem. 2024; 301(1):108047.

PMID: 39638246 PMC: 11748690. DOI: 10.1016/j.jbc.2024.108047.


Unlocking the potential of exercise: harnessing myokines to delay musculoskeletal aging and improve cognitive health.

Gao X, Chen Y, Cheng P Front Physiol. 2024; 15:1338875.

PMID: 39286235 PMC: 11402696. DOI: 10.3389/fphys.2024.1338875.


Myokine, a key cytokine for physical exercise to alleviate sarcopenic obesity.

Zhang L, Lv J, Wang C, Ren Y, Yong M Mol Biol Rep. 2022; 50(3):2723-2734.

PMID: 36571655 DOI: 10.1007/s11033-022-07821-3.


MicroRNA profiling of different exercise interventions for alleviating skeletal muscle atrophy in naturally aging rats.

Liang J, Zhang H, Zeng Z, Lv J, Huang J, Wu X J Cachexia Sarcopenia Muscle. 2022; 14(1):356-368.

PMID: 36457259 PMC: 9891923. DOI: 10.1002/jcsm.13137.


Plasma tumor necrosis factor-α is associated with sarcopenia in elderly individuals residing in agricultural and pastoral areas of Xinjiang, China.

Wumaer A, Maimaitiwusiman Z, Xiao W, Xuekelati S, Liu J, Musha T Front Med (Lausanne). 2022; 9:788178.

PMID: 36160136 PMC: 9492969. DOI: 10.3389/fmed.2022.788178.


References
1.
Lincoln D, Sinowatz F, Baker H, Kolle S, Waters M . Growth hormone receptor expression in the nucleus and cytoplasm of normal and neoplastic cells. Histochem Cell Biol. 1998; 109(2):141-59. DOI: 10.1007/s004180050212. View

2.
Mckoy G, Ashley W, Mander J, Yang S, Williams N, Russell B . Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol. 1999; 516 ( Pt 2):583-92. PMC: 2269271. DOI: 10.1111/j.1469-7793.1999.0583v.x. View

3.
Musaro A, Giacinti C, Borsellino G, Dobrowolny G, Pelosi L, Cairns L . Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proc Natl Acad Sci U S A. 2004; 101(5):1206-10. PMC: 337031. DOI: 10.1073/pnas.0303792101. View

4.
Fielding R, Manfredi T, Ding W, Fiatarone M, Evans W, Cannon J . Acute phase response in exercise. III. Neutrophil and IL-1 beta accumulation in skeletal muscle. Am J Physiol. 1993; 265(1 Pt 2):R166-72. DOI: 10.1152/ajpregu.1993.265.1.R166. View

5.
Frontera W, Meredith C, OReilly K, Knuttgen H, Evans W . Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol (1985). 1988; 64(3):1038-44. DOI: 10.1152/jappl.1988.64.3.1038. View