» Articles » PMID: 23595021

Evolutionary Dynamics of Retrotransposons Assessed by High-throughput Sequencing in Wild Relatives of Wheat

Overview
Date 2013 Apr 19
PMID 23595021
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Transposable elements (TEs) represent a major fraction of plant genomes and drive their evolution. An improved understanding of genome evolution requires the dynamics of a large number of TE families to be considered. We put forward an approach bypassing the required step of a complete reference genome to assess the evolutionary trajectories of high copy number TE families from genome snapshot with high-throughput sequencing. Low coverage sequencing of the complex genomes of Aegilops cylindrica and Ae. geniculata using 454 identified more than 70% of the sequences as known TEs, mainly long terminal repeat (LTR) retrotransposons. Comparing the abundance of reads as well as patterns of sequence diversity and divergence within and among genomes assessed the dynamics of 44 major LTR retrotransposon families of the 165 identified. In particular, molecular population genetics on individual TE copies distinguished recently active from quiescent families and highlighted different evolutionary trajectories of retrotransposons among related species. This work presents a suite of tools suitable for current sequencing data, allowing to address the genome-wide evolutionary dynamics of TEs at the family level and advancing our understanding of the evolution of nonmodel genomes.

Citing Articles

Weed competitive ability in wheat: a peek through in its functional significance, present status and future prospects.

Kaur P, Sachan S, Sharma A Physiol Mol Biol Plants. 2021; 27(10):2165-2179.

PMID: 34744359 PMC: 8526637. DOI: 10.1007/s12298-021-01079-y.


Deep analysis of wild Vitis flower transcriptome reveals unexplored genome regions associated with sex specification.

Ramos M, Coito J, Fino J, Cunha J, Silva H, Gomes de Almeida P Plant Mol Biol. 2016; 93(1-2):151-170.

PMID: 27778293 DOI: 10.1007/s11103-016-0553-9.


Chromosome Specific Substitution Lines of Aegilops geniculata Alter Parameters of Bread Making Quality of Wheat.

Garg M, Tsujimoto H, Gupta R, Kumar A, Kaur N, Kumar R PLoS One. 2016; 11(10):e0162350.

PMID: 27755540 PMC: 5068752. DOI: 10.1371/journal.pone.0162350.


Characterization of new transposable element sub-families from white clover (Trifolium repens) using PCR amplification.

Becker K, Thomas M, Martini S, Shuipys T, Didorchuk V, Shanker R Genetica. 2016; 144(5):577-589.

PMID: 27671023 DOI: 10.1007/s10709-016-9926-x.


Methods for accurate quantification of LTR-retrotransposon copy number using short-read sequence data: a case study in Sorghum.

Ramachandran D, Hawkins J Mol Genet Genomics. 2016; 291(5):1871-83.

PMID: 27295958 DOI: 10.1007/s00438-016-1225-9.


References
1.
Gomez-Alvarez V, Teal T, Schmidt T . Systematic artifacts in metagenomes from complex microbial communities. ISME J. 2009; 3(11):1314-7. DOI: 10.1038/ismej.2009.72. View

2.
Middleton C, Stein N, Keller B, Kilian B, Wicker T . Comparative analysis of genome composition in Triticeae reveals strong variation in transposable element dynamics and nucleotide diversity. Plant J. 2012; 73(2):347-56. DOI: 10.1111/tpj.12048. View

3.
Berkman P, Lai K, Lorenc M, Edwards D . Next-generation sequencing applications for wheat crop improvement. Am J Bot. 2012; 99(2):365-71. DOI: 10.3732/ajb.1100309. View

4.
Bossolini E, Wicker T, Knobel P, Keller B . Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J. 2007; 49(4):704-17. DOI: 10.1111/j.1365-313X.2006.02991.x. View

5.
Tenaillon M, Hollister J, Gaut B . A triptych of the evolution of plant transposable elements. Trends Plant Sci. 2010; 15(8):471-8. DOI: 10.1016/j.tplants.2010.05.003. View