» Articles » PMID: 23578321

The Impact of Quantile and Rank Normalization Procedures on the Testing Power of Gene Differential Expression Analysis

Overview
Publisher Biomed Central
Specialty Biology
Date 2013 Apr 13
PMID 23578321
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Quantile and rank normalizations are two widely used pre-processing techniques designed to remove technological noise presented in genomic data. Subsequent statistical analysis such as gene differential expression analysis is usually based on normalized expressions. In this study, we find that these normalization procedures can have a profound impact on differential expression analysis, especially in terms of testing power.

Results: We conduct theoretical derivations to show that the testing power of differential expression analysis based on quantile or rank normalized gene expressions can never reach 100% with fixed sample size no matter how strong the gene differentiation effects are. We perform extensive simulation analyses and find the results corroborate theoretical predictions.

Conclusions: Our finding may explain why genes with well documented strong differentiation are not always detected in microarray analysis. It provides new insights in microarray experimental design and will help practitioners in selecting proper normalization procedures.

Citing Articles

Genetic variation in chromatin state across multiple tissues in Drosophila melanogaster.

Huynh K, Smith B, Macdonald S, Long A PLoS Genet. 2023; 19(5):e1010439.

PMID: 37146087 PMC: 10191298. DOI: 10.1371/journal.pgen.1010439.


Revealing genetic links of Type 2 diabetes that lead to the development of Alzheimer's disease.

Afzal M, Alharbi K, Alzarea S, Alyamani N, Kazmi I, Guven E Heliyon. 2023; 9(1):e12202.

PMID: 36711310 PMC: 9876837. DOI: 10.1016/j.heliyon.2022.e12202.


Transcriptomic pan-cancer analysis using rank-based Bayesian inference.

Vitelli V, Fleischer T, Ankill J, Arjas E, Frigessi A, Kristensen V Mol Oncol. 2022; 17(4):548-563.

PMID: 36562628 PMC: 10061294. DOI: 10.1002/1878-0261.13354.


Quantitative pupillometry and radiographic markers of intracranial midline shift: A pilot study.

Kim I, Balogun O, Prescott B, Saglam H, Olson D, Speir K Front Neurol. 2022; 13:1046548.

PMID: 36561299 PMC: 9763295. DOI: 10.3389/fneur.2022.1046548.


FastMix: a versatile data integration pipeline for cell type-specific biomarker inference.

Zhang Y, Sun H, Mandava A, Aevermann B, Kollmann T, Scheuermann R Bioinformatics. 2022; 38(20):4735-4744.

PMID: 36018232 PMC: 9801972. DOI: 10.1093/bioinformatics/btac585.


References
1.
Tsodikov A, Szabo A, Jones D . Adjustments and measures of differential expression for microarray data. Bioinformatics. 2002; 18(2):251-60. DOI: 10.1093/bioinformatics/18.2.251. View

2.
Bullard J, Purdom E, Hansen K, Dudoit S . Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010; 11:94. PMC: 2838869. DOI: 10.1186/1471-2105-11-94. View

3.
Szabo A, Boucher K, Carroll W, Klebanov L, Tsodikov A, Yakovlev A . Variable selection and pattern recognition with gene expression data generated by the microarray technology. Math Biosci. 2002; 176(1):71-98. DOI: 10.1016/s0025-5564(01)00103-1. View

4.
Park T, Yi S, Kang S, Lee S, Lee Y, Simon R . Evaluation of normalization methods for microarray data. BMC Bioinformatics. 2003; 4:33. PMC: 200968. DOI: 10.1186/1471-2105-4-33. View

5.
Qiu X, Brooks A, Klebanov L, Yakovlev N . The effects of normalization on the correlation structure of microarray data. BMC Bioinformatics. 2005; 6:120. PMC: 1156869. DOI: 10.1186/1471-2105-6-120. View