» Articles » PMID: 23575667

Metallized DNA Nanolithography for Encoding and Transferring Spatial Information for Graphene Patterning

Overview
Journal Nat Commun
Specialty Biology
Date 2013 Apr 12
PMID 23575667
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

The vision for graphene and other two-dimensional electronics is the direct production of nanoelectronic circuits and barrier materials from a single precursor sheet. DNA origami and single-stranded tiles are powerful methods to encode complex shapes within a DNA sequence, but their translation to patterning other nanomaterials has been limited. Here we develop a metallized DNA nanolithography that allows transfer of spatial information to pattern two-dimensional nanomaterials capable of plasma etching. Width, orientation and curvature can be programmed by specific sequence design and transferred, as we demonstrate for graphene. Spatial resolution is limited by distortion of the DNA template upon Au metallization and subsequent etching. The metallized DNA mask allows for plasmonic enhanced Raman spectroscopy of the underlying graphene, providing information on defects, doping and lattice symmetry. This DNA nanolithography enables wafer-scale patterning of two-dimensional electronic materials to create diverse circuit elements, including nanorings, three- and four-membered nanojunctions, and extended nanoribbons.

Citing Articles

Soft-matter-induced orderings in a solid-state van der Waals heterostructure.

Zhao K, Dong B, Wang Y, Fan X, Wang Q, Xiong Z Nat Commun. 2025; 16(1):2359.

PMID: 40064923 PMC: 11893783. DOI: 10.1038/s41467-025-57690-0.


Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials.

Gao Y, Wang Y Appl Phys Rev. 2024; 11(1).

PMID: 38784221 PMC: 11115426. DOI: 10.1063/5.0171364.


Controlling Silicification on DNA Origami with Polynucleotide Brushes.

Wang S, Lin P, DeLuca M, Zauscher S, Arya G, Ke Y J Am Chem Soc. 2023; 146(1):358-367.

PMID: 38117542 PMC: 10785815. DOI: 10.1021/jacs.3c09310.


Biomass RNA for the Controlled Synthesis of Degradable Networks by Radical Polymerization.

Jeong J, An S, Hu X, Zhao Y, Yin R, Szczepaniak G ACS Nano. 2023; 17(21):21912-21922.

PMID: 37851525 PMC: 10655241. DOI: 10.1021/acsnano.3c08244.


Site-directed placement of three-dimensional DNA origami.

Martynenko I, Erber E, Ruider V, Dass M, Posnjak G, Yin X Nat Nanotechnol. 2023; 18(12):1456-1462.

PMID: 37640908 PMC: 7616159. DOI: 10.1038/s41565-023-01487-z.


References
1.
Taychatanapat T, Jarillo-Herrero P . Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys Rev Lett. 2011; 105(16):166601. DOI: 10.1103/PhysRevLett.105.166601. View

2.
Schedin F, Lidorikis E, Lombardo A, Kravets V, Geim A, Grigorenko A . Surface-enhanced Raman spectroscopy of graphene. ACS Nano. 2010; 4(10):5617-26. DOI: 10.1021/nn1010842. View

3.
Xia F, Farmer D, Lin Y, Avouris P . Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010; 10(2):715-8. DOI: 10.1021/nl9039636. View

4.
Pearson A, Liu J, Pound E, Uprety B, Woolley A, Davis R . DNA origami metallized site specifically to form electrically conductive nanowires. J Phys Chem B. 2012; 116(35):10551-60. DOI: 10.1021/jp302316p. View

5.
Rothemund P . Folding DNA to create nanoscale shapes and patterns. Nature. 2006; 440(7082):297-302. DOI: 10.1038/nature04586. View