» Articles » PMID: 23572080

Distinct Roles for Sir2 and RNAi in Centromeric Heterochromatin Nucleation, Spreading and Maintenance

Overview
Journal EMBO J
Date 2013 Apr 11
PMID 23572080
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

Epigenetically regulated heterochromatin domains govern essential cellular activities. A key feature of heterochromatin domains is the presence of hypoacetylated nucleosomes, which are methylated on lysine 9 of histone H3 (H3K9me). Here, we investigate the requirements for establishment, spreading and maintenance of heterochromatin using fission yeast centromeres as a paradigm. We show that establishment of heterochromatin on centromeric repeats is initiated at modular 'nucleation sites' by RNA interference (RNAi), ensuring the mitotic stability of centromere-bearing minichromosomes. We demonstrate that the histone deacetylases Sir2 and Clr3 and the chromodomain protein Swi6(HP1) are required for H3K9me spreading from nucleation sites, thus allowing formation of extended heterochromatin domains. We discovered that RNAi and Sir2 along with Swi6(HP1) operate in two independent pathways to maintain heterochromatin. Finally, we demonstrate that tethering of Sir2 is pivotal to the maintenance of heterochromatin at an ectopic locus in the absence of RNAi. These analyses reveal that Sir2, together with RNAi, are sufficient to ensure heterochromatin integrity and provide evidence for sequential establishment, spreading and maintenance steps in the assembly of centromeric heterochromatin.

Citing Articles

Finding new roles of classic biomolecular condensates in the nucleus: Lessons from fission yeast.

Sugiyama T Cell Insight. 2024; 3(5):100194.

PMID: 39228923 PMC: 11369484. DOI: 10.1016/j.cellin.2024.100194.


RNA quality control factors nucleate Clr4/SUV39H and trigger constitutive heterochromatin assembly.

Khanduja J, Joh R, Perez M, Paulo J, Palmieri C, Zhang J Cell. 2024; 187(13):3262-3283.e23.

PMID: 38815580 PMC: 11227895. DOI: 10.1016/j.cell.2024.04.042.


Identification of an active RNAi pathway in .

Iracane E, Arias-Sarda C, Maufrais C, Ene I, dEnfert C, Buscaino A Proc Natl Acad Sci U S A. 2024; 121(17):e2315926121.

PMID: 38625945 PMC: 11047096. DOI: 10.1073/pnas.2315926121.


Mathematical model for the role of multiple pericentromeric repeats on heterochromatin assembly.

Ghimire P, Motamedi M, Joh R PLoS Comput Biol. 2024; 20(4):e1012027.

PMID: 38598558 PMC: 11034663. DOI: 10.1371/journal.pcbi.1012027.


Rex1BD and the 14-3-3 protein control heterochromatin organization at tandem repeats by linking RNAi and HDAC.

Gao J, Sun W, Li J, Ban H, Zhang T, Liao J Proc Natl Acad Sci U S A. 2023; 120(50):e2309359120.

PMID: 38048463 PMC: 10723143. DOI: 10.1073/pnas.2309359120.


References
1.
Volpe T, Kidner C, Hall I, Teng G, Grewal S, Martienssen R . Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002; 297(5588):1833-7. DOI: 10.1126/science.1074973. View

2.
Herr A, Baulcombe D . RNA silencing pathways in plants. Cold Spring Harb Symp Quant Biol. 2005; 69:363-70. DOI: 10.1101/sqb.2004.69.363. View

3.
Nonaka N, Kitajima T, Yokobayashi S, Xiao G, Yamamoto M, Grewal S . Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol. 2002; 4(1):89-93. DOI: 10.1038/ncb739. View

4.
Zhang K, Mosch K, Fischle W, Grewal S . Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat Struct Mol Biol. 2008; 15(4):381-8. DOI: 10.1038/nsmb.1406. View

5.
Bernard P, Maure J, Partridge J, Genier S, Javerzat J, Allshire R . Requirement of heterochromatin for cohesion at centromeres. Science. 2001; 294(5551):2539-42. DOI: 10.1126/science.1064027. View